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ABSTRACT

Meteorological observing networks are nearly always irregularly distributed in space. This irregularity gen-
erally has an adverse impact on objective analysis and must be accounted for when designing an analysis scheme.
Unfortunately, there has been no completely satisfactory measure of the degree of irregularity, which is of
particular significance when designing artificial sampling networks for empirical studies of the impact of this
spatial distribution irregularity. The authors propose a measure of the irregularity of sampling point distributions
based on the gradient of the sums of the weights used in an objective analysis. Two alternatives that have been
proposed, the fractal dimension and a ‘‘nonuniformity ratio,’’ are examined as candidate measures, but the new
method presented here is considered superior to these because it can be used to create a spatial ‘‘map’’ that
illustrates the spatial structure of the irregularities in a sampling network, as well as to assign a single number
to the network as a whole. Testing the new measure with uniform and artificial networks shows that this parameter
seems to exhibit the desired properties. When tested with the United States surface and upper-air networks, the
parameter provides quantitative information showing that the surface network is much more irregular than the
rawinsonde network. It is shown that artificial networks can be created that duplicate the characteristics of the
surface and rawinsonde networks; in the case of the surface network, however, a declustered version of the
observation site distribution is required.

1. Introduction

As noted in Koch et al. (1983), Smith et al. (1986),
and Barnes (1994), the degree of irregularity in an ob-
servational array’s distribution can have a large impact
on the way an objective analysis (OA) is done and how
successful it is likely to be. In fact, Buzzi et al. (1991)
have developed a method to minimize the negative im-
pact of irregularity in the spatial sampling. Empirical
tests of OA schemes often are conducted to support the
choices of the OA method and any of its associated
parameters. These empirical tests usually make use of
an analytic input function with which to compare the
analyzed values. On one hand, it is logical to sample
the analytic function with the actual station distribution
(e.g., Smith et al. 1986). When doing this, however,
there is some degree of uncertainty regarding the gen-
erality of the results; the given results might depend to
some unknown extent on the specific station distribution
under consideration and its position in relation to the
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analytic function. If, instead, an artificial network is
used in empirical tests (e.g., Barnes 1994, hereinafter
B94), it becomes possible to remove the effects of a
particular realization by performing the tests on a num-
ber of different, but statistically similar, station distri-
butions. The problem with this latter approach is that
there has not been a simple way to compare the artificial
and real networks. In other words, there has been no
common measure of irregularity between the two, such
that it can be said with confidence that the artificial
network is ‘‘similar’’ in some sense to the real network.
The objective of the present study is to find a measure
of irregularity that allows the comparison of such ar-
tificial distributions with real data arrays.

Two measures of the degree of irregularity proposed
by other authors are investigated and found inadequate,
for reasons described in section 2. A new measure of
irregularity is proposed in section 3, based on an idea
presented in the appendix of Doswell and Caracena
(1988, hereinafter DC88), and various tests of the pro-
posed measure are presented. Section 4 contains two
practical examples of using the measure, using the U.S.
surface and rawinsonde networks pictured in Fig. 1, and
section 5 concludes with a summary of the results of
this work and additional topics for future research.
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FIG. 1. (a) The U.S. surface observation network sites and (b) the U.S. upper-air network sites, as of fall 1993.

2. Previously proposed measures of irregularity

a. The fractal dimension

Lovejoy et al. (1986) have proposed using the fractal
dimension to characterize the distribution of a geo-
physical data array. When considering a station distri-
bution in a two-dimensional embedding space (as on
the surface of the earth), the fractal dimension (denoted
Dm) should be two for a uniform distribution of data
points. Real, irregular data distributions (Fig. 1) should
have a fractal dimension between zero and two, with
the degree of inhomogeneity being measured by 2 2
Dm. The correlation dimension Dc is often used as an
approximation for the fractal dimension because it is
easier to calculate (Grassberger and Procaccia 1983;
Lovejoy et al. 1986; Korvin et al. 1990). Determining
the correlation dimension consists of counting the num-
ber of stations n within a series of circles of increasing
radii r around each point in the observation lattice, so
that n 5 n(r).1 We followed the recommendation of
Korvin et al. (1990), who noted that r should not exceed
one-third of the largest interstation distance to produce
a reliable estimate of Dc. By finding the average of n(r)
over all the stations (avoiding counting the same dis-
tance twice), denoted ^n(r)&, a plot of ln^n(r& versus lnr
can be created. The correlation dimension Dc is the slope
of a line fitted to the data on such a plot. Lovejoy et
al. (1986) used the correlation dimension method to find
a fractal dimension of approximately 1.75 for the World
Meteorological Organization (WMO) network and pre-
sented this measure as a guide in determining detect-
ability limits. Because the fractal dimension addresses

1 The radius r has been nondimensionalized for our calculations.
The value of 190.5 km used for the nondimensionalization is an
artifact of the algorithm we have used to convert latitude–longitude
locations to x–y coordinates on a map projection. That algorithm is
based the Limited-Area, Fine-Mesh Model (LFM) grid spacing of
190.5 km at the standard latitude used in the polar stereographic
projection, expressing coordinates in grid units.

the inhomogeneity of the network, we investigated it as
a candidate measure of irregularity to compare simu-
lated and real networks.

We applied the correlation dimension technique to
fictitious and real station distributions, including the sur-
face and upper-air stations of the contiguous United
States. When considering stations near the boundaries
of the finite area data lattice, we obtain values of n(r)
that differ significantly from those within the interior of
the data domain. This property of finite data domains
is well known: Barnes (1964), Achtemeier (1986),
DC88, and Pauley (1990) all recognized that data lattice
boundaries create difficulties. The standard approach
(although by no means the only one) is to erect what
Cressie (1991, p. 607) called ‘‘guard areas’’ inside the
perimeter of the data lattice. In other words, one only
considers information from stations within the interior
of the data lattice; one chooses a guard barrier (a term
we have used in preference to Cressie’s term, area) such
that the results near the edge of the guard barrier are
indistinguishable from those deeper within the data lat-
tice.

Having erected a guard barrier near the edges of the
data lattice, another problem arises, however. Fitting a
straight line to the points in the plot using least squares
is a straightforward procedure, but problems arise when
deciding which points to use in the fitting process if the
entire profile is not linear. Results of this process are
shown in Fig. 2 for both the surface and upper-air net-
works. For the upper-air network, two different parts of
the curve appear linear, yielding very different fractal
dimensions of 1.97 and 4.46. The concept of a network
having different fractal dimensions over different scales
is not new (e.g., Tessier et al. 1994) but complicates the
use of the fractal dimension for comparing the irregu-
larity of station distributions. Furthermore, the fractal
dimension in either section of the plot can be changed
by making small changes in which points to consider
in the line-fitting. Using the last 12 data points at the
top of the plot instead of the last 30 yields a fractal
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FIG. 2. Results of the fractal dimension method for (a) the U.S.
upper-air and (b) the U.S. surface observation networks pictured in
Fig. 1. The slopes of the fitted lines are indicated in the legend boxes.

dimension of 1.72 instead of 1.97. The fractal dimension
of the surface network (Fig. 2b) also shows some in-
dication of multiple fractal dimensions (1.50 or 1.86,
again depending on which points are chosen for the
fitted line). The uncertainty in the fractal dimension as-
sociated with the choice of points for the line-fitting is
as large as or larger than the difference between the
upper-air and surface networks. Considering this point
and the possible uncertainty about which fractal di-
mension to use, we conclude that the subjectivity as-
sociated with this measure is unacceptable for compar-
ing irregularity among different spatial distributions.

b. The nonuniformity ratio

In B94, considerable use was made of a nonunifor-
mity ratio r, proposed by Smith et al. (1986), which
they defined as

E 2 M
r 5 ,

M

where E is what Smith et al. call the ‘‘equivalent uniform
station spacing’’ (defined as the spacing derived by dis-
tributing the original number of stations uniformly over
the data domain) and M is the mean distance to each
station’s nearest neighbor in the real array.2 A uniform
sampling array would have r 5 0, and the greater the
irregularity, the larger r would become. It certainly can
be argued that our proposed measure is not substantially
different from r. However, r is a single number intended
to represent the nonuniformity of the data array as a
whole. By using the proposed measure described in the
following section, the irregularity can also be displayed
over the domain, to provide a picture of how the data
density varies in space. In our opinion, this conveys
more information about the nonuniformity of data than
does any single number.

An equally important point is the fact that r is in-
dependent of the OA scheme that will be used with the
data, while the measure proposed in the next section
can be ‘‘matched’’ to the OA scheme by making use of
the same parameters. Thus, this measure truly assesses
the impact that the irregularity has on the OA scheme’s
results and can provide feedback on the appropriate
choice of parameters to minimize the effect of the ir-
regularity on the OA.

3. A new measure of irregularity

Two ideas have contributed to our proposed measure.
First, Barnes (1964) showed a figure (his Fig. 4) dis-
playing the number of stations influencing the analysis
as a function of space. Barnes used a ‘‘radius of influ-
ence’’ in his OA scheme: Stations outside this radius
were not considered in the analysis. Thus, the spatial
constancy of the number of stations within this radius
reflects, in a crude way, the uniformity of stations.
Where that number is relatively constant (as in the center
of the United States), the stations are relatively uniform.
Barnes’s figure shows that the major contribution to
nonuniformity of rawinsonde observations is that as-
sociated with data domain boundaries. Outside of the
land area of the United States, the data density drops
precipitously. There are clusters and voids within the

2 As used in B94, the uniformity ratio is not quite the same as that
defined by Smith et al. B94 uses the average of the six nearest neigh-
bors, rather than the single nearest neighbor, when calculating M.
This should provide a somewhat smoother result than that of Smith
et al.
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FIG. 3. Distributions of (a) the sum of the weights (nondimensional) and (b) the proposed measure m (values shown
are 10 times the value of a centered difference over two dimensionless grid intervals) based on Eq. (2) in the text, for
the fall 1993 upper-air network. The dashed rectangle in (b) depicts the area within which the values shown in Table
2 were computed.

interior of the country also, and a finer contour interval
would make this more obvious.

The other aspect of the idea was explored tentatively
in DC88 in the appendix. Specifically, they showed that
the gradient of the weight function used in distance-
dependent weighted averaging contains a term involving
the gradient of the normalizing factor, which is simply
the sum of the weights affecting any given grid point.
Figure 3a shows that in regions of quasi-uniform data,
the gradient of the sum of the weights affecting the
analysis should be quite small; in regions of substantial
irregularity, the gradient would be large and could affect
the calculation of data gradients.

Therefore, we consider the magnitude of the gradient
of the sum of the weights; that is,

n

m [ ¹ w , (1)O k[ ]) )k51

(where n is the number of stations considered and wk is
the weight assigned to the kth station at the analysis
point in question) to be a candidate parameter for es-
timating the degree of irregularity in a station distri-
bution. Although the selection of a weighting function
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FIG. 4. The average m versus l for a uniform square grid (with Dd
5 1.0) for three different values of the guard barrier distance: 2Dd,
4Dd, and 6Dd.

is a potentially troublesome issue, it should be clear that
unless the selection is done poorly, many different func-
tions all should give roughly comparable results. We
have chosen to use the Gaussian weighting function
proposed by Barnes (1964)

22(R /kw 5 e l) , (2)k

(where Rk is the Euclidean distance from the analysis
point to the kth data point and l is the shaping parameter
of the scheme) largely because of its convenience and
familiarity. Determination of the shaping parameter l
is considered below.

The examples shown in this paper are all for a single-
pass OA scheme, but the proposed method can be adapt-
ed for multipass schemes. For purposes of this paper
(testing the proposed measure), we consider it sufficient
to employ any particular OA scheme; the single-pass,
Gaussian weighting has been chosen for convenience.
We believe that if some other scheme is being used for
OA, that scheme is the one to use for measuring the
irregularity of the sampling network. Multipass OA
techniques require calculating an inverse Fourier trans-
formation on the known final response function of the
multipass scheme, to find the single-pass weighting
function equivalent to the multiple-pass scheme. Once
that equivalent single-pass weighting function is known,
(1) can be used to calculate the m values as described
in the following sections.

a. Some preliminary issues

Certain parameters must be set before calculating the
values of m described by (1), and unwise choices of
these parameters may render the measure useless. Thus,
we now describe the experimentation that has led to the
choices we advocate.

1) GUARD BARRIER

The notion of a guard barrier has been introduced
already, in the context of noting the effects of the data
lattice boundary upon the results of the fractal dimen-
sion method. In the context of our method, we observe
that the shaping parameter l in (2) determines a length
scale of importance: the e-folding distance for the
weights. The parameter l determines the ‘‘reach’’ of the
weighting scheme; for example, the weighting scheme
gives a weight less than 0.0183 for all points beyond a
Euclidean distance of 2l. This means that a sum of the
weights will not ‘‘feel’’ the boundaries very much until
it is within about 2l–3l. If the guard barrier is chosen
to be somewhere in this range, the average value of the
sum of the weights will not be affected adversely by
the data lattice boundaries. After some experimentation
(Fig. 4) with a uniform square grid, which should yield
m 5 0, we have chosen a guard barrier of 4Dd, equiv-

alent to about 3l (where Dd is the median data spacing).
The choice of 4Dd is a compromise between guard bar-
riers of 2Dd and 6Dd: 4Dd (with l 5 1.3; see the next
section for a discussion of how l is chosen) gives a
more accurate depiction of m than the 2Dd case without
sacrificing so much of the data domain as in the 6Dd
case.

2) SHAPING PARAMETER

Given the foregoing experiments, it appears that by
making l small enough in the interiors of our theoret-
ically ‘‘uniform’’ data grids, it is indeed possible to drive
m to quite low values. When l is too large, the interior
of the data domain still ‘‘feels’’ the data boundaries;
however, it is not obvious that we would necessarily
want to make l extremely small, since that implies ex-
cessive weighting on values quite close to the analysis
point. Ordinary OA considerations suggest that making
l too small gives an excessively ‘‘noisy’’ analysis. Our
results (Fig. 4) show that when l is too small, the m
values increase owing to spurious waves that appear in
the field of the sums of the weights because of a Moiré-
like effect. These results show that the smallest value
of the average m for the uniform grid occurs at l 5
1.3, which is 1.3 times the median data spacing (Dd).
This value was endorsed by Pauley and Wu (1990) and
is within the range of values advocated by Caracena et
al. (1984). It is important to note that one should use
the same value of l in the irregularity measure as that
used in one’s OA scheme. For examining the theoreti-
cally uniform square data lattices with unit spacing, we
use l 5 1.3. As we have shown, the guard barrier that
is suited best to a value of l 5 1.3 is 4Dd; these choices
make the interior values of m sufficiently small for any
practical purposes.
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FIG. 5. Maximum (squares) and average (circles) values of m for
the upper-air network as a function of computational grid spacing.
Plotted points correspond to particular values of Dd/N, where N ranges
from 1 to 20 in unit steps, plus a last value (far left) at N 5 100.
Arrows indicate values at a grid spacing of Dd/6.

TABLE 1. Displacement experiments and
the corresponding average m.

Experiment
x

displacement
y

displacement Avg m

Control
1
2
3
4
5

0.0
0.5

20.3
20.05

0.2
0.2

0.0
0.5
0.2

20.4
0.0

20.5

0.000005
0.000010
0.000006
0.000007
0.000010
0.000005

We have chosen not to use a ‘‘radius of influence’’
or ‘‘cutoff radius’’ in the analysis. Therefore, all data
points are included in the sum of the weights at any
point in the computational domain. Clearly, points far
away contribute virtually nothing to the sum, which
therefore will be dominated by the data distribution near
any specific point in question. If a cutoff radius is used
in one’s OA scheme, however, the same cutoff radius
should be used when testing the irregularity, to keep it
‘‘matched’’ to the OA scheme.

3) COMPUTATIONAL GRID SPACING

In our calculation of m using (1), the gradients are
computed with second-order finite differences on a
square computational grid, and the computational grid
spacing has an effect on the size of the m values. The
maximum and average values of m increase as the grid
spacing decreases (Fig. 5); a smaller grid spacing is able
to detect more of the real value of the magnitude of the
gradients. Similar results were found for the surface
network (not shown). Apparently, the true value of m
can be found only in the limit as the computational grid
spacing approaches zero. To maximize the accuracy of
m values while keeping computational costs associated
with a large number of grid points within bounds, we
have chosen a computational grid spacing of Dd/6; most
of the value of the gradient (99% in this example) is
captured at this point (see Fig. 5). The Dd/6 criterion
can be applied to most data distributions encountered
in meteorology, unless it is obvious a priori that the
distribution is pathologically irregular (large voids com-
bined with intense clustering of sample points). This
choice obviously is related to issues of resolution dis-
cussed in DC88.

b. Tests with uniform data distributions

To conduct a ‘‘control’’ experiment with our method,
we evaluate the maximum, minimum, and average m
values for a 27 3 15 uniform square grid (as an example
of a fictitious, uniform data distribution). The computed
average value of m is slightly greater than zero
(;0.00000517); this corresponds to the minimum plot-
ted in Fig. 4 for l 5 1.3. For a uniform data distribution,
m should be zero, so this control experiment confirms
this supposition, at least within the finite computational
limits of real experiments. It will be shown in later
experiments (see, e.g., Table 2) that values of m for
different networks are possible on the order of 1, so this
m value of 0.00000517 is indeed a very small number
in comparison to the range of values possible and thus
can be effectively considered to be zero. A test per-
formed with twice the number of grid points in the
uniform grid with the same unit grid spacing produces
an average m of approximately 0.00000487, which dem-
onstrates only a modest dependence of m on n.

We also have tested the effects of the computational
grid having some specific spatial relationship to the data
sampling array. These ‘‘displacement’’ experiments
consist of shifting the sampling sites in relation to the
computational grid and evaluating the effect on m. Five
different displacements of the sampling sites are shown
in Table 1, along with the corresponding average m val-
ues. Because the sampling sites are uniformly distrib-
uted, the average values of m are expected to be zero
as in the control case, and indeed they are very small,
albeit with slight variation. The results of these exper-
iments reveal that the average m and, hence, our choice
of l and the guard barrier are not affected significantly
by a displacement of the data points relative to the com-
putational grid.

c. Tests with artificial irregular distributions

We can create increasingly irregular distributions in
a manner comparable to B94 to test the applicability of
our measure. The distributions start with a uniform
square array of sampling sites with unit spacing, which
are displaced according to

x 5 x 6 n D0 r

y 5 y 6 n*D, (3)0 r
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where x and y are the new locations of the data point
originally located at (x0, y0), nr and are pseudorandom*nr

numbers uniformly distributed between 0 and 1, and D
is the scatter distance,3 the maximum amount the point
can be moved in either of the x or y directions. For each
grid point, four random numbers between zero and one
are generated: The first is the amount the grid point is
moved in the x direction and the second is the sign of
that movement (a random number less than 0.5 means
movement in the negative x direction); the third and
fourth are the same except they apply to the y direction.
The algorithm to generate random numbers is an ad-
aptation of the method described by Press et al. (1986),
which they assert to be free of sequential correlation.
As D increases, so should the irregularity of the distri-
bution, at least up to a ‘‘saturation’’ point (see below).
Some examples of the artificial distributions are shown
in Fig. 6. We have created 20 realizations for each size
increment of D by starting the pseudorandom number
generator with a different seed for each realization and
have averaged the results over the set of 20 realizations
to find typical results for D values of that magnitude.
The scatter distance D is allowed to vary from 0.1 to
100 by increments of 1.0, except between 0.1 and 2.0,
where the increment is 0.1.

In the process of our experimentation, it became clear
that we need to decide how to deal with points that are
scattered outside of the original data boundaries. There-
fore, all of our experiments are done with three different
‘‘boundary conditions’’: 1) ‘‘dispersive,’’ in which the
data points are allowed to be scattered outside of the
original data boundaries; 2) ‘‘reflective,’’ in which
points that would have been scattered outside a bound-
ary are reflected that same distance back inside the
boundary; and 3) ‘‘periodic,’’ in which the data points
are allowed to exit a boundary but reenter the domain
at the opposite boundary, such that the point is as far
inside the one boundary as it would have been outside
the other boundary.

The results for the reflective and periodic boundaries
tend to be very similar in most cases, but the dispersive
case behaves differently, owing to a decrease in the
number of points within the original boundaries. That
the dispersive case would behave differently could have
been anticipated just by looking at the three kinds of
distributions at D 5 10 (Fig. 7). In the dispersive case,
the overall density of data within the original data do-
main boundaries decreases as D increases.

The maximum, minimum, and average m values using
each of the different boundary conditions (Fig. 8) show
that by a D ; 1.5, the irregularity has attained a max-
imum. This can be considered a sort of ‘‘saturation’’ of
the irregularity; increasing D further simply moves

3 Note that D is scaled to the grid spacing (n) of the initially
uniform array of sampling sites to be perturbed so that, for example,
a D value of 5.0 corresponds to D 5 5n.

points around without materially affecting the irregu-
larity of the distribution. Figure 10 in B94 shows ba-
sically the same result.4 Making D . 1.5 reveals no
discernible trend in the reflective and periodic boundary
cases; however, for the dispersive boundary case, the
average m starts to decrease again. This effect obviously
is due to the decreasing number of points within the
computational grid.

Thus, we have verified that m increases when the
irregularity increases. Given this initially satisfactory
result, it is useful to evaluate how our artificial station
distributions compare with those characterized by com-
plete spatial randomness (i.e., exhibiting nearest-neigh-
bor distributions described by a Poisson distribution, as
detailed in the appendix). Using the nearest-neighbor
distributions for D 5 0.1, 0.5, 1.0, and 5.0 (Fig. 9), it
is clear that as D increases, the distribution approaches
that of a Poisson random variable. Using the Pearson
test (also described in the appendix), the distributions
for D 5 0.1 and 0.5 are rejected as being Poisson at
the 0.01 significance level, but the distributions for D
5 1.0 and 5.0 are accepted as good fits to the Poisson
distribution at the 0.01 level. Thus, our method of cre-
ating ‘‘random’’ distributions proves to be quite com-
parable to true spatially random sampling for D $ 1.0.

A final test addresses the dependence of m on n, the
number of data sampling sites in the distribution but
this time using an irregular sampling distribution. Using
D 5 0.5, 20 different realizations of irregular distri-
butions are created using twice the number of data points
as used in the previous experiments. The average m 5
0.939, which is only slightly different than the value
found above with half the sampling sites (0.954). We
conclude that m does not depend strongly on n.

4. Two practical examples

This section describes how one can use the proposed
measure to create artificial distributions with the same
amount of irregularity as real data networks. Once the
artificial distributions have been verified to be as irreg-
ular as the data network in question, those artificial dis-
tributions can be used to test how well an OA scheme
responds to irregularities in the data sampling.

a. U.S. upper-air network

The appropriate l for the upper-air network is com-
puted as 1.3 times the median from the nearest-neighbor

4 What Barnes calls the ‘‘offset’’ is the same as our ‘‘scatter dis-
tance,’’ or D. It does appear in Barnes’s Fig. 10 that ‘‘saturation’’
occurred at an offset of 2, whereas our results suggest that saturation
occurs around D 5 1. When we run a test comparing the methods
with identical station distributions, they both ‘‘saturate’’ around D
5 1. Thus, whatever the source of the discrepancy, they appear to
be giving similar results for a given station distribution.
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FIG. 6. Examples of increasingly irregular distributions created by perturbing uniform data points
from their original locations (represented by the grid). Distributions are shown for (a) D 5 0.1,
(b) D 5 0.5, and (c) D 5 1.0.

distribution and is about 470 km. For the upper-air net-
work, it is necessary to change the guard barrier to 2Dd
(;723 km), because Dd (the median of the station spac-
ing) is so large for this distribution that the 4Dd value
suggested earlier does not leave much of an interior part
of the dataset to evaluate. The computational grid spac-

ing is Dd/6, or about 60 km. The average m is 0.24 for
the upper-air network; by comparing this value to the
m values in Fig. 8 for the artificial distributions, we see
that artificial distributions having the same amount of
irregularity can be created using D ø 0.15. Thus, we
are able to create artificial distributions that are com-
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FIG. 7. Examples of artificial distributions for D 5 10 using (a)
dispersive boundaries, (b) periodic boundaries, and (c) reflective
boundaries. The heavy solid line in (a) represents the original 27 3
15 data domain.

parable in terms of irregularity to the upper-air network
with which to test an OA scheme.

It is of some interest to note, within this context, that
the upper-air network has been undergoing some per-
turbations as a result of the modernization efforts within
the National Weather Service. Using our method for
characterizing the degree of irregularity of the distri-
bution, Table 2 reveals that the changes in station siting
have not significantly changed the regularity of the net-
work yet. For those in the meteorological community
who feel that the greater the degree of sampling irreg-

ularity, the lower confidence one can have in data anal-
ysis, any shuffling of the station sites is a major concern.
With our proposed measure of irregularity, the irregu-
larity of the resulting network can be monitored.

b. U.S. surface network

After using our proposed measure of irregularity on
the surface network,5 we find the average value of m to
be 2.69, using a l ; 56 km, a guard barrier of 4Dd, or
about 173 km, and a computational grid spacing of Dd/6,
or about 7 km. Comparing this m value to those in Fig.
8, we find a curious result: We are unable to duplicate
the amount of irregularity in the surface network by the
random scattering process we have used to create the
artificial distributions.

To understand the reason for this result, we again fit
Poisson curves to the surface network’s nearest-neigh-
bor distribution and judge the goodness-of-fit with the
Pearson test. The surface network is rejected as being
Poisson at the 0.01 level of significance (Fig. 10). Con-
sidering Fig. 10, the surface network appears to be too
clustered (many stations have very close nearest neigh-
bors) to be considered spatially random. It is this clus-
tering that makes the surface network so very irregular,
so much that we are unable to duplicate it with the
artificial distributions.

Based on the preceding results, we decided to de-
cluster the surface network to decrease the irregularity.
Our simple declustering algorithm is as follows: A clus-
ter is defined by counting the number of stations within
a certain distance, the declustering radius, of any given
station. More than one station within the declustering
radius constitutes a cluster. When a cluster is detected,
a station in the cluster is removed as determined by the
original ordering in the station listing. After the first of
the stations in a cluster is removed, the cluster is tested
again and stations are removed repeatedly until only
one station in the original cluster remains.

Declustering the surface network does decrease the
irregularity (see Fig. 11). Using our simple algorithm
with different declustering radii, it was found that when
it is declustered to remove stations less than 60 km apart,
the irregularity is low enough to be duplicated by the
artificial distributions. This is revealed in Fig. 12, with
m values for the declustered surface network overlaid
onto the artificial network results originally shown in
Fig. 8c. Thus, artificial distributions can be created with
the same amount of irregularity as that of the declustered
surface network using D ø 0.85. The values of m for
the declustered surface network and the total surface

5 The surface network that we use includes all of the possible
reporting stations. Generally, not all of the sites report at any given
time, so the actual station density of real data sites will be slightly
less than this density used here. When we test the actual reporting
sites on several different days, the change in m is less than 10%.
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FIG. 8. Averaged maximum (open circles with dots), minimum
(diamonds), and average (filled circles) m values for the 20 simula-
tions of artificial distributions versus D using (a) dispersive bound-
aries, (b) periodic boundaries, and (c) reflective boundaries.

network are also presented in Table 2 with the upper-
air network results. It should be noted that even the
declustered surface network fails the objective Pearson
goodness-of-fit test for a Poisson distribution, although
the visual appearance of the fit (not shown) is consid-
erably better than that of Fig. 10.

5. Summary and future work

We have shown that it is possible to create artificial
networks that closely match the characteristics of the

U.S. upper-air and declustered U.S. surface datasets by
starting with a uniform grid of points and performing
the appropriate perturbations. Therefore, we believe that
our method of characterizing the degree of irregularity
in a sampling array enables meteorologists to do em-
pirical experiments with artificial networks with some
assurance that their artificial networks have similar sam-
pling characteristics to the real networks. Our approach
to measuring the degree of irregularity of station dis-
tributions is simple both in principle and in practice so
that it should be possible to execute an analysis of the
irregularity in a dataset routinely before doing an ob-
jective analysis, and we recommend that those doing
OA make it a practice to do so.

Future efforts in this area might well include a sys-
tematic exploration of analyses done with triangular
computational grids. In B94, it was noted that in a tri-
angular array of sites each site has six equidistant nearest
neighbors, whereas in a square array, each site has only
four equidistant nearest neighbors. Hence, in this re-
stricted sense, a triangular array is ‘‘more uniform’’ than
a square grid.

It also would be useful to explore alternative methods
for declustering data networks for the purpose of achiev-
ing a roughly uniform distribution of points for objective
analysis purposes. For example, the ‘‘superob’’ method
(DiMego 1988) of replacing station clusters with a sin-
gle station having the average location coordinates of
stations within a cluster might well give somewhat better
results than the simple scheme we have used. Also, it
remains to be seen how one might create an artificial
network with the distribution characteristics of the ac-
tual surface network before declustering. We believe
that a method for artificial clustering the results of a
‘‘perturbations’’ experiment can be developed.

Finally, we have indicated that station distributions
might have important impacts on objective analysis, ow-
ing to the gradient of the sum of the weights term as
described in the appendix of DC88. It would be useful
to know precisely at what degree of irregularity the OA
is affected significantly from this term. As noted in
DC88, when this term becomes important, the ordering
of objective analysis and differentiation becomes im-
portant in gradient computations. Most schemes com-
puting derivatives diagnostically do the objective anal-
ysis first, which DC88 contended is the improper order
for irregular station distributions. Thus, some empirical
testing with quantitative knowledge of the degree of
irregularity would be valuable in deciding the validity
of doing the objective analysis first.
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FIG. 9. Poisson curves fit to the averaged artificial distributions for (a) D 5 0.1, (b) D 5 0.5, (c) D 5 1.0, and (d) D 5 5.0. Solid lines
denote the theoretical Poisson values while filled circles represent the observed values.

TABLE 2. Maximum, minimum, and average values of m for
theoretically uniform and real sampling networks.

Sampling network Max m Min m Avg m

Uniform square grid
U.S. upper-air network, fall 1993
U.S. upper-air network, Nov 1994
U.S. upper-air network, Feb 1995
Total U.S. surface network
Declustered U.S. surface network

0.00
0.51
0.55
0.51

34.04
5.67

0.00
0.01
0.01
0.01
0.00
0.01

0.00
0.24
0.23
0.23
2.69
1.38
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APPENDIX

Testing Distributions against the Poisson
Distribution

According to Cressie (1991, 602 ff. and 633 ff.), ‘‘the
distribution theory for nearest-neighbor distances . . .
under complete spatial randomness is well-known.’’ In
a two-dimensional Cartesian space, the distribution
function of the station to station distance has a density
given by
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FIG. 10. Poisson curve fit to the nearest-neighbor distribution for
the U.S. surface network pictured in Fig. 1.

FIG. 12. As in Fig. 8c except the declustered surface network values
of m (denoted by squares) are overlaid. The declustering radius is 60
km.

FIG. 11. Average m as a function of the declustering radius used to
decluster the U.S. surface network.

22g(x) 5 2pjxe pjx , x . 0,

where x is the distance from a station to its nearest
neighbor and j is the intensity parameter, which can be
approximated by the average data density over the do-
main. This distribution is derived by assuming that the
station distribution is described by a homogeneous Pois-
son process, whereby the probability of having a station
in a given small area dx2 is given by j and that prob-
ability is essentially constant over the domain.

Poisson curves are fit to the nearest-neighbor distri-
butions computed from the distribution to be tested us-
ing the method of least squares, which involves solving

22x g e pjxO i i i
ij5 22 23 2 2 22 2 4 2pjxip x g e pjx 12p x e pjx 22p j x eO O Oi i i i ii i

i i i

iteratively for j (the parameter of the Poisson distri-
bution); g is the distribution function described above.
Despite its formidable appearance, the iterative solution
converges rapidly. The fit of the Poisson curve to the
nearest-neighbor distribution is judged by the Pearson
test statistic C1, defined by

k 2(X 2 np̂ )i i0C 5 ,O1 np̂i51 i0

where k is the number of classes in the nearest-neighbor
distribution, Xi is the observed number in each nearest-
neighbor category, n is the total number of points, and
p̂ is the theoretical Poisson probability for each nearest-i0

neighbor category. As long as p̂ . 5 for each nearest-i0

neighbor category, C1 can be treated as a chi-squared
random variable (Larsen and Marx 1986), and the as-
sociated hypothesis test is to reject the distribution as
being Poisson if

C1 $ 2x12a,k22

at the a level of significance, with k 2 2 degrees of
freedom.
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