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1.  INTRODUCTION

Interpolation using the weighted average
method is a handy way of simultaneously smooth-
ing and reformatting irregularly spaced data
onto a regular grid where it can be used for
model inputs or further computations. Cressman
(1959) called the  technique "objective
analysis." The process in this paper is simply
called interpolation.

Interpolation variously performed can
result in a wide range of outputs all based on
the same input data. The form of the weighting
function is one source of variability, and the
choice of weighting function parameters is
another. This raises two important questions:
(1) how can the weighting function be chosen,
and (2) can the choice of weighting function
parameters be optimized?

The answer to these two questions is rather
involved and really beyond the scope of this
report. Instead, consider these discussions as
a point of departure for later addressing much
larger issues. They are rather specialized: a
Gaussian weighting function has been used, and
most of the arguments have been restricted to
one dimensional cases. However, the conclusions
represent results which can be used in practical
applications.

The reader may find some of the following
discussion (particularly in Section 3) somewhat
abstract. It is necessarily presented here
because the conclusions follow directly from
these abstract discussions. If the discussion
seems too abstract, simply skip over it; but be
sure to read the conclusions and examples.
These will be elaborated on at the conference,
but the theory will be presented only here.

2. THE GAUSSIAN WEIGHTING FUNCTION

One of the many choices presented by an
interpolation scheme is in selecting the weight -
ing function. In general interpolation scheme
can be stated in terms of two equations:

N
iy * . L 1 "(Dijs) Flxg) » (1)
1% 1,2 .M 0%, 2, <oy Ny
N
- z : wW(Dij) = 1 - (2)

The index s in (1) and (2) refers to the set of
input data points and the two indices 1, s
refer to the set of output points which are
located on a regular grid on a surface. The
weighting function w is an analytic function of
Di's the distance between an output grid point
(1ﬂdexed by i and j) and an input data point
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(index by s). The sampled value of the other-
wise unknown function at the point x. is repre-
sented by F(xs), and the interpolated value at
the grid point” (indexed by ij) is represented by

I The interpolation procedure used in this
paper is based on a Gaussian weighting function
as proposed and described by Barnes (1964). The
weighting function must also satisfy the normal-

jzation (2), and is therefore defined as
follows:
Wiy Dyjs) =
¥ 4 2 .2
exp(-DijS/ko)/[ T i exp(-DijS.o/x)] ) (3)
s =

The parameter,A,, sets the approximate range of
influence, which is also a smoothing scale
length. The form of the weighting function (3)
assumes that the data points are distributed
along both the x and y axis with about the same
spacing. If this is not the case, then there
must be a separate scale parameter for each
axis.

At first sight, the weighting function
given by (3) might appear to depart signifi-

cantly from a Gaussian because of division by

the normalizing sum. This is not the case,
however, because this sum is almost a constant
over the input data domain under certain con-
ditions, and departs significantly from a con-
stant value only beyond the boundaries of this
domain. This 1s demonstrated by the plot in
Fig. la of the normalizing sum over the right
half of a regularly spaced 11 point interval on
a straight line using a Gaussian weighting
function parameter of A, = 1.4, The normalizing
sum is progressively closer to a constant as the
parameter A, becomes progressively greater than
the average data separation. Over the interior
of a two dimensional data domain, this sum can
also approximate a constant, and likewise falls
off rapidly from this constant value beyond the
boundaries the two dimensional domain. An
example of this value is presented in Fig. 1b
which shows the number of data points influenc-
ing a particular interpolation over the UsS.
radiosonde grid.

As a result of the behavior of the sum of
the weights (Fig. la and 1b), the weighting
functions (3) for points inside the data domain
will be almost identically Gaussian (see Fig.
2a), but for the boundary points will depart
radically from the Gaussian form. Further, the
boundary points will have weighting functions
that are very close to Gaussian on those por-
tions facing inward toward the interior of the
data domain, but radically different from Gaus -
sian in the outward facing portions. This
behavior is illustrated by the plots in Fig. 2b
where 5 weighting functions over half the inter-



val (from Fig. 2a) are translated and superposed
relative to a common center. The effect of a
asymmetric weighting functions is a distortion
in the interpolated values near the boundaries
and beyond. The tendency of the interpolated
field tends to flatten out and approach the
value of the boundary points asymptotically.
This distortion also extends inward from the
boundaries about one scale length, Ag.
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Fig. la. Plot of normalizing sum of Gaussian
weights for the positive half of sample inter-
val consisting of 11 uniformly spaced data
points along the x axis symmetrically dis-
tributed about the origin.

Fig. 1b. Smoothed distribution of the number of
data affecting the calculation of the inter-
polated value at each grid point for the U.S.
radiosonde grid (From Barnes, 1964).

1 T T T T T
- 172 DATA INT->
NURMALIZED_GQUSSIQN
GAUSSIAH WEIGHTING
FUNCTIOHS(LAM=.2L)

.9 .5L i

Fig. 2a. Plot of 6 weighting functions corres-
ponding to situation described in la.

3. DISCUSSION OF ERRORS ASSOCIATED WITH SAMPL-
ING INTERPOLATION AND SMOOTHING

The effects of finite, discrete sampling of
a function are usually discussed in communica-
tions and information theories. Fourier trans-
form theory and harmonic analysis usually play a
central role in these discussions. The follow-
ing discussion is a very brief summary of that
portion of the one dimensional theory which is
used in discussing interpolation and sampling
errors.

The Fourier transform (Fft) of a function
(F) in one dimension is given by the expression,

)y = | o 8™ px) (4a)

Fe

where k is the wave number,

k = 2n/M . (5)
The inverse Fourier transform is defined as:
F(x) =gn [ ak e FOF (k) (4b)

The convolution of two functions is another
central concept of information theory,

Wiw) =~ ] o Ftx -is*) 6(xY) . (6)

The Fourier transform and the convolution are
related by the Convolution Theorem which states:

a. the Fourier transform of the convolu-
tion of two functions is equal to the
product of their Fourier transforms,
and

b. the Fourier transform of the product of
two functions is equal to the convolu-
tion of their Fourier transforms.
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Figt 2b. Plot of same 6 weighting functions in
Fig. 2a but with centers translated so that
they coincide.



For example, the Fourier transform of the con-
volution (6) is

Hft(k) = Fft(k) Gft(k) . (7)
Alternatively, the Fourier transform of the
product,

h(x) = f(x) g(x) , (8)
is
hft(k) = {¢dk' fft(k - k") gft(k') A (9)

The concept of a Fourier transform is
important in information theory because it char-
acterizes the information content of the data.
When the signal 1is concentrated in a narrow
range of wavelengths, the Fourier transform is
narrow, but the spatial pattern is relatively
smooth. Conversely, a broad Fourier transform

implies that the signalal is spread over many
wavelengths, so the spatial pattern has a lot of
variation. The details of Fourier analysis are
complex, but the interested reader will find
them well worth the effort (see, e.g. Champeney,
1973).

The convolution theorem is an important
tool because it allows one to evaluate rather
involved Fourier transforms. Specifically, in
our application we wish to know what happens to
the Fourier transform of a function as it is
sampled over restricted domains. Consider the
Fourier transform of a continuous function that
is sampled continuously over a limited spatial
domain, -L/2< x < L/2. This can be represented
by the product,

F'(x) = R(x) F(x) , (10)
where R is the rectangular function,
T, Sk ks b2,
R(x) = =
0 , otherwise . (11)
The sampled function F'(x) in (10) is

identical to F(x) over the restricted domain
specified by R(x) and is zero elsewhere. The
Fourier transform of the product (10) can be
evaluated with the convolution theorem to yield
the following:

Fro() = f ak' Reg(k = k') Fee(k') (12)

The Fourier transform of the rectangular
function (11) is readily evaluated to be the
following:

th(k) =2 sin (k L/2)/k . (13)

Note that there 1is a symmetry between
Fourier transform and its inverse. Together
these constitute what is known as a "Fourier
transform pair." For example, a spatial func-
tion which is the analog of (13),

s(x) = 2 sin (kg x/2)/x , (14)
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has a Fourier transform that is the analog of

(11),

1
Sep (k) = { i

The function (14) has a Fourier spectrum which
cuts off sharply outside the band defined by the
limits +k /2, and so is called a "band-limited"
function.

Now suppose the function (14) is sampled
over the interval -L/2 < x < L/2. In this case
the sample function has a Fourier transform
which is given by (12) with the Fourier trans-
form function S¢y replacing Fe, . The resultant
transform, for a spectral distribution Sft which
is ten times as wide as th, is shown 1in Fig.
3a. The Fourier transform of the sampled func-
tion is in this case a fairly good approximation
to the source function (15). When the source
function has a Fourier spectrum Sg. that is

) ‘ko/zixf_kolz ’

, otherwise . (15)

COMUOLUTION OF RECTANGULAR
STEP WITH SIHNCX)s¥ FUNCTION

Fig. 3a. The Fourier transform of the product
of the band limited function (14) and the
rectangular function (11) where the spectral
width of the sampled function (15) is ten
times wider than that of the rectangular
function (13).

COMUOLUTION OF A UNIT RECTAHGULAR
FUMCTION AND SINCX) ¥ FUNCTION
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Fig. 3b. Same as Fig. 3a but with a spectral
width for the source function twenty times
wider than that of the rectangular function.



twenty times wider that th, the convolution
(12) gives a still better approximation of the
actual Fourier transform of the source function
(see Fig. 3b).

In general, as the band width of Fg. in
(12) 1is progressively wider than that of ﬁft’
the closer the convolution of them, Ft., approx-
imates the Fourier transform of {ﬁe source
function. In terms of the spatial counterparts,
this means that observed features progressively
suffer less distortion as more and more of their
environment is sampled. This means that a mete-
orological network should be able to sample an
area which is about an order of magnitude Targer
in linear dimensions than the phenomenon of in-
terest in order to avoid this distortion.

Discrete sampling of a function over a
finite domain, -L/2 < x < L/2 in one dimension,
produces effects analogous to those discussed
above, but with additional complexities. Here,
only the effects of sampling on a regular grid
are considered because the complexity of irreg-
ular sampling is beyond the scope of this dis-
cussion. The discussions here apply to ir-
regular sampling but with some modifications to
be addressed in a future publication.

Consider the weighting function inter-
polation scheme (1), (2), (3). This procedure,
although discrete, can be written in the form of
an integral,

f(x) =
[Pdx" Wi, b= %'y E{x*) A (xY) (16)

with the help of the Dirac comb function

N-1
gkl 2 T 8(x - x. ) . (17)
s =0
The function, f(x), is the interpolated value of
the sampled function, F(x). The weighting func-
tion in (16) is the one dimensional form of (3)
with the added feature that the normalizing sum
is taken to be constant so that

w(rg |x - xll) =

cons*exp[-(x - x')z/xgl . (18)

The previous section shows that this sum is well
approximated. by a constant for the interior
points of the sample interval when N = 11, while
it departs significantly from a constant only at
the two end points and beyond.

The Fourier transform of the interpolated
function in (16) is computed by repeated appli-

cations of the convolution theorem. The first
application yields,
fee (k) = wee (Ags k) [FAde(K) , (19)

where the convolution of the weighting function
is

Wey (nys k) = const¥expl-(kn,/2)1% . (20)
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The second application of the convolution theo-
rem yields the Fourier transform of the product
on the right hand side of (19),

{FA}fék) = [ dk* Fft(k') Aft(k = ki) . (21)

In evaluating the Fourier transform, Ag., assume
that the points x. in (17) are regularly spaced
on a straight line,

xg = [s - (N - 1) N/2)ax , (22)

where the sample interval, Ax, width of the
sample domain, L, and number of samples, N, are
related by

(N-1) ax =1L . (23)

With (22) and (23) the Fourier transform (4a) of
(17) is evaluated in a straightforward manner
yielding,

. : N-1
£ explik (n - =) ax] . (24)

Ac (k) =
NORIES

n

Champeney (1973) writes (24) in the analytically
more compact form

Aft(k) = sin (kNax/2)/sin (kax/2) . (25)

This function (25) is plotted in Fig. 4, which
shows that Ag is periodic in k with a funda-
mental period ETVAx. The central major spike in
each fundamental cycle has a width of 4x/[Nax].
Consider what happens to (25) as the number
of samples within the interval, L, approaches
infinity and the distance between nearest
samples, Ax, correspondingly approaches zero
according to (23). In this case the interval

weighted Fourier transform (25) has a well
defined limit,
Lim age (k) ax = 2 sin(kL/2)/L , (26)
N»>o
Ax > 0
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Fig. 4a. A plot of the Fourier transform (25)
of the finite Dirac comb (17). It is periodic
with a wave number periodicity of 2n/2ax, and
the width of its major peaks is 4=n/(N Ax).



which is identical to the Fourier transform (13)
of the rectangular function (11).  Thus, the
periodic function (25) consists a fundamental,
repeating pattern which approaches the Fourier
transform of a rectangular function (11) as the
sampling density increase, while the major side
lobes of this function are displaced further to
the sides.

An example of how well the Fourier trans-
form of the Dirac comb (22) with eleven sample
points approximates that of a rectangular func-
tion (13) is seen in Fig. 5, where these two
functions are superimposed. The central spike
makes an almost perfect fit, and the lesser side
peaks progressively are poorer approximations
until the main side lobes are reached.

Given the above properties, it is possible
to gain some understanding of the Fourier trans-
form of the product of a Dirac comb with that of
the sampled function (21). Suppose the band-

width of the sampled function is simultaneously
much less than twice the Nyquist wave number
(2n/ax) and much greater than the width of the
major peaks in the Fourier transform of the
Dirac comb function (4n/(N ax]). The resulting
effect of the convolution is to generate a peri-
odic function, the central peak (centered on the
origin) of which approximates the Fourier trans-
form of the sampled function. The remaining
periods to * = represent spurious repetition of
the spectrum due to discrete sampling. Depend-
ing on the sharpness of the band limits, the
central period of this pattern then contains
very little contamination due to contributions
from the repacted portions of the spectrum.

This contamination 1is called non-local
aliasing. The effects of both types of aliasing
are illustrated in Fig.'s 6a-d where the convol-
utions of A (k) with four rectangular functions
(of extent Ak = 2, 3, 4, 5) are plotted. Notice
how local aliasing increases until it becomes
non-local, as the spectral width of the source
function approaches the separation of major
lobes in the Fourier transform of the Dirac
comb.

4, DISCUSSION OF APPLICATIONS

There are two sources of error which are
associated with interpolating. over a limited
domain. First, there is a truncation of the
sample function due to the finite domain size.
To eliminate this type of error one must make
the data domain about an order of magnitude
Targer than the phenomenon being sampled.
Second, there is a more serious source of error
in the edge effect. Weighted average interpo-
lation produces an edge distortion that extends
inwards from the boundaries of the data domain
about one smoothing scale-length.

The edge distortion due to finite domain
size can be reduced to a negligible amount if
the analysis domain is one scale-length smaller
in linear dimensions than the data domain. A
corollary of this rule is that the number of
data samples must be large enough to allow for a
significant analysis area. For example, with a
network of 9 stations there is no area that
escapes significant edge distortion. In fact,
25 quasi-uniformly distributed stations, are
required to just begin to give a meaningful
analysis. With this minimum number, there is an

113

l(ll‘1li|l‘(1!ll(|(u1lll

FIMITE RAMNGE

1 dizcrete VS

o continuous
sampling

e

@

llllllljllllllllllllllll
&R -Co- 43 -20-28-18 B 18 Z@ 2@ 48 5B &8
Fig. 5, Superportion of the Dirac comb Fourier
transfor with the Fourier transform of a
rectangular function that spans the data
interval.

Fig. 6. A series of convolutions with the
Dirac comb Fourier transform (see Fig. 5 and
Eq. 22) with a series of rectangular spectral
distributions of progressively broader extent
which from top to bottom they are Ak = 2,3,
4, 5.

undistorted analysis area of only about 2ax by

20y .

" Discrete sampling produces additional types
of error over and above those associated with
the finite size of the data domain. The prin-
cipal source of error js a folding of the Four-
jer components or "aliasing" (Blackman and
Tukey, 1958). Aliasing error, in principle,
can be reduced to negligible size through two
procedures: (1) make the sample interval Ax
small enough that it is smaller than any signif-
jcant wave length (or feature) in the phenomenon
that is being sampled, and (2) choose a smoo?h-
ing scale length A, in the weighting function
that gets rid of the aliasing that remains
without destroying significant parts of the
signal.

Aliasing due to significant power at wave-
lengths at or below the 2ax level has a patho-
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logical effect on interpolation. If the band-
width of the source function is larger than the
Nyquist frequency, 2m/2Ax, then the interpolated
field has a Fourier spectrum that is contaminat-
ed by aliasing from side lobes. The noise from
this non-local aliasing cannot Be removed by
smoothing and therefore it seriously distorts
the interpolated field. The only way to over-
come non-local aliasing is to sample the phenom-
enon with sample intervals (Ax, Ay) that are
smaller than half the 1least significant wave
length.

Even if the source function is sampled suf-
ficiently, there remains another component of
aliasing which can be removed by smoothing. A
discretely sampTed function, with an appropriate
sample interval, has a periodic Fourier trans-
form. The spectrum consists of a central lobe
(about k = o) which is duplicated to infinity in
all directions with a periodicity which is twice
the Nyquist frequency (2n/Ax). However, only
the central lobe contains the signal, while the
side lobes represent various components of
noise. Since the function was sampled suffic-
jently, the central lobe contains no significant
aliasing error and therefore, this aliasing
error can be removed simply by suppressing all
the side lobes.

This suppression is accomplished through
proper choice of smoothing parameter in the
weighting functicn. This is due to the fact
that the spectrum of the interpolated function
is given by the product of the Fourier transform
of the weighting function and that of the sample
function. The Fourier transform of the weight-
ing function (18) is approximately the Gaussian
function,

Gft(k) = const*exp[-(kx°/2)2] (27).

Now, the parameter A, in (27) can be chosen such
that the side lobes appear with less than any
specified percentage of the amplitude of the
central lobe. To do this, simply set the half
width (at the specified level) of (27) to the
Nyquist interval and set the response of the
weighting function (27) equal to a specified

tolerance [e) as follow:

2n )\0)2] < :

exp [' (-Zm ( 28)

Solving the inequality (28) for the smoothing
parameter, A, we get,

3 % 2AX

b = -1n (e)

(29).

The relation (29) specifies the smoothing scale
length necessary to reduce the nearest side
lobes to at least ¢ of the amplitude of the cen-

s >=
Eﬁgrlw ]Sge'musltf e ﬁ"""B}e’ar'{‘ € an o%%gyio 1904

8X.*  Or we can relate the requirement to e =

fNote that in this case Ax is the average sample
interval and not the grid interval of %ﬁe
interpolated field.
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0.1, in which case we can use the smaller scale
smoothing parameter, A = 0.966ax. : :
The results of the previous discussion
about aliasing can be reduced to a simple rule:
choose the smoothing parameter in the weight
Tunction to be about the same size, Cr cTightly
Targer than, the average sample interval of the
data. At this level of smoothing, the contam-
Tnation due to aliasing is held to less than 10%
of the true signal. However, the smoothing
should not be too strong, or else a significant
amount of the signal may be attenuated, and a
significant portion of the interpolated values
near the boundaries may be distorted by edge
effect. Therefore the smoothing parameter
should not be too much greater than about 1.4Ax.

5.  EXAMPLES

The results of the foregoing discussions
are applied to two examples on a two dimensional
plan: the first is an analytic test pattern,
and the second is extracted from an actual
meteorological case study. Both examples employ
Gaussian interpolation with but a sing]e pass,
since the effect of multiple passes 1S beyond
the scope of this paper.

Example 1. The test pattern plotted in
Fig. 7 was generated by the function,

Z(x,y) = -100 sin(0.2=x) sin(0.2my) . (30)
This function was sampled at 81 points, the x, ¥
coordinates of which were chosen initially on a
regular grid (ax, ay = 1.375 units) and then
pseudo-random values between the limits *25% ;he
original spacing were added to these coordin-
ates. The original sample range was 0-11 for
both x and y coordinates and was broadened
slightly by the randomizing procedure.

A

Fig.. '7. A contour representation of the
or1g1nal test function Z(x,y) = -sin(.2nx)
sin(.2ny). The contours extend from a lowest

value of -80 to a heighest value of +80, and
the contour interval is 20.



the sum of
the Gaussian weights at points within the
analysis domain. The heighest contour in the
upper, rignl , central portion of the figure
is 6.4 and the lowest contour in the upper
righthand corner is 3.2. The contour in
Ferval is 0.4.

Fig. 8.

A contour presentation of

As a result of randomizing, the normalizing
sum is not strictly constant over the interior
of the data domain but varies weakly there (see
Fig. 8). Its behavior is similar to that of the
radiosonde grid depicted in Fig. 1b. Notice in
Fig. 8 the lack of a strong gradient in the
weighting sums at the bottom of the figure.
This happens because the analysis domain is
shifted approximately one smoothing scale length
up from the data boundary.

The effects of varying the smoothing length
(Ay) on single-pass Gaussian interpolation are
apparent in the series of figures (Figs. 9a-9c).
At A, = 0.365 ax (Fig. 9a) the smoothing length
is well below its opimal value for one dimension
(xo = 1,366), and note that it is heavily con-
taminated by aliasing. However, the edge dis-
tortion is not significant because of the small-
ness of the smoothing parameter in relation to
the grid size.

Notice that there is a progressive improve-
ment in the quality of the interpolated field as
the smoothing parameter approaches the one di-
mensional optimal value (Figs. 9a-9c). True to
the foregoing theoretical discussions, the value
A. = 1.366 Ax (see Fig. 10d) represents about
the best compromise in simultaneously minimizing
the distortion, due to aliasing and edge ef-
fects. As the smoothing length is increased
beyond the optimal value, aliasing fis further

reduced but there is also a significant decrease
in fidelity owing to loss in response and edge
distortion (see Fig. 9c).

Fig. 9. A series of Gaussian weighted sum
interpolations with progressively more
smoothing:
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Fig. 9b. A, = 1.366 ax,

Fig. 9c. A, = 2.18 ax,



Fig. 10. A series of Gaussian weighted inter-
polations of 700-300 thickness for 1200 GMT,
26 June 1982 with progressively stronger
smoothing:

Fig. 10c. A, = 1000 km.
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Example 2. The same effects described
above are all apparent in the three analysis of
the 700-300 mb thickness field for 1200 GMT, 25
June 1982 (Figs. 10a-c). However in this case,
there is no known function against which to
compare the results. Since the first analysis
(Fig 10a) has a smoothing parameter which is
closest to the ideal smoothing length, it repre-
sents the best analysis in the series. It has
the least noise contamination and edge effects.
The other two analyses (Figs. 10b and 10c)
progressively flatten the field and contaminate
it with edge distortion.

6.  CONCLUSION

This paper has presented a discussion of
how aliasing, smoothing and edge effects affect
the values of an interpolated field. The ideas
used here are extensions of those used in infor-
mation theory which was developed in connection
with electrical signal processing. Unlike our
colleagues in the electronic field, however,
meteorological ‘“signals" are not sampled as
often as desired nor on an arbitrarily detailed
grid. In fact, the situation usually confront-
ing us is a sample that is just barely adequate
to accomplish our analysis.

The result is that we must exercise special
care to see if (1) a meaningful analysis is
possible, (2) smooth sufficiently to discard
aliased noise, and (3) not oversmooth lest edge
effects and loss of information also deteriorate
the output.
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