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ABSTRACT

By its very nature, interpolation in a vector field is ambiguous, owing to the somewhat .arbitrary
nature of the vector norm. Since a two-dimensional vector field can be specified by two scalar quanti-
ties, which can be separately interpolated, the ambiguity can be resolved by forcing the interpolated
wind field to preserve the vorticity and divergence fields associated with the raw data. A method to
calculate divergence and vorticity directly from randomly spaced wind observations is developed and,
using analytically generated data, shown to produce more accurate resuits than conventional compu-
tations. Two methods of retrieving the wind field from the analyzed scalar fields are presented
and also tested on the analytic field. Finally, total analysis, from wind observations to gridded wind

fields, is demonstrated on real meteorological data.

1. Introduction

A fundamental problem in numerical analysis is
that of non-uniqueness of vector field interpolation
. (Levinson and Redheffer, 1970, p. 409). This arises
since a vector is a directed quantity; interpolation
of components does not necessarily yield the same
results as interpolation of magnitude and direction.
This problem can have a significant impact on ob-
jective interpolation of the meteorological wind
field. For a simple demonstration, consider two
points on an east-west line (Fig. 1). At point A
the horizontal wind is westerly (270°) at 10 m s™!
while at point C it is southerly (180°) at 10 m s—!.
The interpolated wind speed at the midpoint (B) is
also 10 m s™? from a direction of 225°. However,
component interpolation gives a reconstructed
wind which has a speed of 7.07 m s™!, again from a
direction of 225°. An example of this interpolation
problem’s effect has been shown by Williams (1976).
In a comparison of data interpolated via computer
to that interpolated manually, he found that while the
two methods yielded virtually equivalent values for
scalar quantities (e.g., temperature, pressure, dew-
point temperature), the wind speed estimates dif-
fered by an average of 3.5 m s~!, while wind direc-
tions were roughly equivalent.

For simplicity, this discussion is limited to the
horizontal wind, a two-dimensional vector field.
Such vectors can be uniquely defined, to within a
vector constant, by the velocity potential and
streamfunction (Schwartz et al., 1960, p. 326).
The velocity potential represents the irrotational
component of the vector field while the streamfunction
corresponds to the nondivergent portion of it. The

horizontal divergence of the wind and appropriate
boundary conditions determine the velocity po-
tential. Similarly, the vertical component of vorticity
is used to find the streamfunction, again under the
boundary conditions. Since these are scalars, any of
a wide variety of interpolation schemes can be
applied to them (e.g., Doswell, 1977).

Certain aspects of this approach have been ex-
amined by Ceselski and Sapp (1975). However,
their presentation does not emphasize the details
concerning the technique used to determine ‘‘meas-
ured’’ vorticity and divergence and does not ob-
jectively assess the quality of the results. Rather,
they have concentrated on the interpolation
methods. Further, we feel that determination of re-
constructed winds from the resulting divergence
and vorticity fields requires additional examination.

The wind recovery process intimately depends
upon the proper specification of boundary condi-
tions. Several papers have discussed this problem
(e.g., Stephens, 1968; Hawkins and Rosenthal,
1965; Bedient and Vederman, 1964; Sangster, 1960).
The essence of these works is that specification of
boundary conditions (Dirichlet, Neumann or mixed)
on streamfunction and velocity potential prede-
termines the structural details of the wind field, to
some degree.

Two different inversion techniques based on
variational methods are presented here. The first re-
quires the wind field to have the specified divergence
and vorticity, subject to the constraint that the
domain-averaged velocity of the analyzed field
equals that obtained through a prior component
interpolation. The second method forces the wind
field’s divergence and vorticity to be as close to
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the predetermined values as is possible, under the
restriction that the winds around the boundary have
a point-by-point correspondence to those obtained
by some independent interpolation technique.

2. Direct evaluation of divergence and vorticity

a. Advantages of integral definition

From a generalization of Stokes’ Theorem, the
horizontal divergenge can be computed either by
differentiation or by integration:

1
stﬂ-vsa—”+ﬁleim—§ kv X dr, (1)
ox dy 40 r

where A = [[sdo is the area of the surface S, k a unit
“vector normal to S, do a differential surface area,
and dr the differential of the position vector along
the curve I which bounds S and lies in the horizontal
plane. In applying the differential definition to real
data, many problems arise. As pointed out in Sec-
tion 1, interpolation of winds to a uniform grid is a
non-unique process. Further, a conventional cen-
tered difference always underestimates the true
derivative [via multiplication by a diffraction func-
tion, as shown by Hamming (1962, p. 318)]. A
third error source stems from the limited accuracy
of the data itself. Morel and Necco (1973) have
shown that the total uncertainty of the computa-
tion can be greater than 100%.

The integral definition eases these constraints.
Since line integrals are being evaluated, an initial
interpolation of the winds is not necessary. Rather,
it is assumed that an individual wind measurement
represents an average value along a portion of the
path of integration. Also, the ‘‘roughing’’ inherent
in numerical differentiation is replaced by the
“‘smoothing’’ of integration. However, the increased
number of ‘‘data points’ available (Ceselski and
Sapp, 1975) allows a compensating resolution in-
crease in the interpolated fields. While there is still
uncertainty in the computations, Eddy (1964) has
concluded that the noise level in the meteorologi-
cally important part of the spectrum is significantly
less than the true value. It must be pointed out that
the limit in the defining equation implies that the
computed divergence is the average value within the
spatial curve considered and not a true point value.
Thus, a horizontal scale is attached to each esti-
mate. Morel and Necco (1973) have shown that the
spectrum is adequately measured for wave lengths
greater than about 400 km (the approximate spac-
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FiG. 1. Schematic example of non-uniqueness problem
in vector interpolation.
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FiG. 2. Geometric configuration for three different methods of
evaluating the line integral definitions (see text for details).

ing between rawinsondes over the contiguous
United States).

The vertical component of vorticity can be simi-
larly defined through an integration procedure:

2

Since the rotation of wind vectors 90° to the right
produces a wind field with vorticity equal to the
divergence of the original field (Saucier, 1955, p.
339), comments on the divergence estimates are
directly applicable to vorticity, and evaluation
techniques are similar.

b. Method of evaluation

- Bellamy (1949) has developed a method of esti-
mating divergence via an integral technique. For
the curve I', a triangle is selected with vertices at the
wind observation points (points A, B, C, in Fig. 2).
The winds are then allowed to displace the vertices
for a time interval 8. Since divergence is equal to
the percentage increase in area enclosed by the
curve per unit time, an estimate of its value is
immediately obtained. This method assumes that the
wind varies linearly along each leg of the triangle.
Under the linearity assumption, a direct evalua-
tion of the line integrals in Egs. (1) and (2) is possible.
The mean wind along each leg of the triangle is
considered to be the component average of the
values at the two vertices. It is informative to note
that this divergence estimate differs from that ob-
tained by the Bellamy method. Direct evaluation of
the line integral yields a change in area equal to the
hatched portions in the figure. The Bellamy method
considers not only this expansion, but also an addi-
tional area around each vortex (stippled portions of
figure). The magnitude of the difference between
these results is directly proportional to the time
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increment & chosen for the Bellamy method. As
8t approaches zero, the two methods converge to
the same answer. '

A third method of evaluation is available. A *“cir-
cumscribed” triangle can be constructed (points
A', B, C' in Fig. 2) so that wind observations are
located at the mid-point of each leg. When this is
done, it is no longer necessary to compute an ‘‘aver-
age”” wind along each segment. Rather, the mean
wind along a side is approximated by the only wind
measured along it. This is obviously crude, but it
- makes maximum use of observed data, reserving
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filtering and smoothing to the interpolation scheme
used to grid the randomly spaced data, where the
response can be spectrally controlled. Evaluation
of the line integral is straightforward, with results
virtually identical to those of the second method
above. ‘

It should also be noted that the derivative and
integral evaluations of the divergence (vorticity) are
equivalent, to within an approximation involving
the determination of an ‘‘average’’ wind vector. To
see this, we consider a centered finite difference
scheme, so that

Vev|, ~ Us — U5 V3=V _ (us — us)28y) + (v4 — v:)2A%) _ 1 § k-v x dr, 3)
2Ax 2Ay 4AxAy A

R Rl N Sl W (uy — u)2Ax) + (v — v5)R4y) 1 v-dr, @
2Ax 2Ay 4AxAy A

where the grid is arranged as indicated in Fig. 3.
In applying the derivative definition, it is tacitly as-
sumed that the mean wind along the path con-
necting three grid points is equal to the wind at the
center point (e.g., the average wind along the path
connecting points 6 and 7 equals v3). This may not be
true. The smoothing process used by the National
Meteorological Center model (Shuman and Hover-
male, 1968) ¢hanges this implied averaging of the
wind by effectively assuming that the mean wind
along a path is obtained with a Hann average
(Blackman and Tukey, 1958, p. 171).

Both theoretical and practical considerations
limit the triangles for which divergence computa-
tions can be reliably made. From a large set of
wind observations, a much larger set of triangles
can be obtained. The process of choosing a
particular subset of triangles from the set of all
possible triangles has an influence on the diver-
gence calculation, since the computed divergence
values are not independent. Instead, each repre-
sents an average divergence over its associated
triangle, which shares at least one side with adja-
cent triangles. Ideally, uniform triangle sizes should
be used. Further, they should have an area com-
mensurate with that of the grid used in the final ob-
jective analysis (Eddy, 1964). Since evaluation of
the line integral becomes unstable when the data
are unevenly distributed with respect to the centroid,
the ideal triangles should be equilateral.

For real meteorological data, none of these re-
quirements can be precisely satisfied, but they are
used as constraints in selecting which triangles to
consider. In a manner somewhat similar to Celselski
and Sapp (1975), an initial circle is drawn around
each wind observation. Within that circle, the num-
ber of wind observations is counted. The radius of

the circle is then systematically varied until at least
four but less than nine observations (to limit the
possible triangles within the circle to a reasonable
number) are contained within it. All combinations of
the selected observations are then used to construct
candidate triangles. Candidate triangles may over-
lap, and do not have to include the central observation
point. From geometric considerations, any triangle
containing an arbitrarily chosen minimum angle of
15° or less is immediately discarded.

The remaining triangles are each assigned a weight
equal to the square of the tangent of the minimum
angle, divided by the area. This empirically moti-
vated weight has the feature that for similar tri-
angles, the one with the smallest area has the largest
weight. For equal area triangles, the one closest -
to being equilateral will be weighted most. It
should be emphasized that this weighting is not used
in the interpolation, but is only done to choose
those candidate triangles which are closest to being
ideal. Within each scanning circle, the maximum
number of triangles retained is arbitrarily set at two
more than the number of data points it contains.

From these triangles, the line integrals are evalu-
ated. A divergence (or vorticity) value is computed
at each triangle centroid. These values are con-
sidered as observations and interpolated to a uni-
form grid. The grid, shown in Fig. 4, is chosen such
that its spacing is roughly half that of the average
data spacing. This results in each grid point repre-
senting an area about the size of the smallest candi-
date triangles.

c. Test of technique on an analytically defined

field

To show the validity of the technique, a proce-
dure similar to that of Leary and Thompson (1973)
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is employed. An analytic wind field ¢thus having
known divergence and vorticity) is defined. Wind
values at locations corresponding to the actual
rawinsonde observing stations (Fig. 4) are used to
evaluate the line integrals for divergence and vortic-
ity. Wind components, divergence and vorticity
are objectively interpolated to equally spaced grid
points. Interpolated wind components are used to
evaluate the differential definition of the derived
fields via centered differences.

A one-pass Gaussian weighting (Barnes, 1964)
has been chosen for interpolation. While argu-
ments exist in favor of other interpolation tech-
niques, this choice does not detract from the
generality of the conclusions. If fields com-
puted using the integral technique are substantially
better than those obtained through differentiation
when a simple interpolation method is employed,
the increased ‘‘resolution’’ available (because there
are more triangles than wind observations) should
make even greater improvement possible when more
exotic objective analysis techniques are used.

A synoptic time (1200 GMT 8 November 1977)
has been selected more or less at random. For
this time, 85 rawinsondes were released in and
around the analysis grid. From these observations,
333 triangles were retained by the selection routine.
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FiG. 3. Arrangement of a centered finite difference grid
(see text for details).

For the first test, a Rankine-combined vortex
(Milne-Thomson, 1968, p. 355) centered in Kansas
(the approximate center of the data-rich contiguous
United States) is defined over the analysis grid.
For such a flow field, the product of vorticity and
the two metrical coefficients (modified vorticity) is a
circular disk of constant value, with zero values
elsewhere. The modified vorticity field is also indi-
cated on Fig. 4. The divergence is identically zero.

When divergence is computed via the differential
definition, nine relatively strong centers (|D|
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FiG. 4. 50 kPa rawinsonde observing sites at 1200 GMT 8 November 1977,
with superimposed analysis grid. Shaded circle denotes region of constant
modified vorticity (2.99 x 105 s~1). Tick marks indicate the coordinates of the

grid.
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FiG. 5. Divergence times 107® s~!; shading denotes positive values. (a)
Differential definition from component analysis, (b) direct evaluation via line

integral.

> 5 X 1078 s71) are fallaciously created (Fig. 5a).
In contrast, the line integral evaluation yields no
values of this magnitude (Fig. 5b) and essentially
shows numerical noise superposed on the zero
divergence field.

A dramatic alteration of the modified vorticity
field occurs when the differentiation process is em-
ployed (Fig. 6a). The uniform core is broken into
-three distinct centers with very noticeable wave-
like perturbations developing along the theoretically
circular boundary. While line integration does not
yield a perfect observation of the field (Fig. 6b),
its representation is much closer to actuality. Only
one maximum is present and its general shape is

more nearly circular. Thus, for the Rankine-com-
bined vortex, the integral evaluation gives a sub-
stantial improvement in the estimation of kinematic
parameters. :

As a further test, a mathematical streamfunction
which resembles atmospheric flow (Miyakoda, 1963)
is examined:

P(x,y) = C — Uy — Vy2 + Wy? + A sin(x)
+B cos(2x) — E cos(x) sin(y)
= D{1 + [(x — xo)* + (y — yo)*VL*}7'2, (5)

where C, U,.V, W, A, B, E, D, L, xy and y, are
constants. Since this is a stream function, there is
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FiG. 6. Vorticity times 10-5 s7!; shading denotes areas in excess of 30
x 107% s~!, (a) Differential definition from component analysis, (b) direct
evaluation via line integral.

no divergence in the associated winds. For one
choice of the constants,! the streamfunction and its
associated vorticity field are shown in Fig. 7. Winds
implied by this streamfunction are computed at the
rawinsonde observing sites, and divergence and
vorticity are evaluated by both line integral and
derivative techniques. In neither case is the com-
puted divergence field (Fig. 8) equal to the true
(zero) field. However, the triangle method gives a
marked improvement over the component tech-

! The particular choice of constants depends on the grid
geometry, so that the actual values chosen are not of general
significance and have not been presented.

nique in the depiction. While ten centers of rela-
tively strong divergence are created by the differ-
ential evaluation, only three such centers are pres-
ent in the integral depiction. Further, the magnitudes
obtained by using the triangles are considerably
smaller than those found when the other method is
applied.

The discrepancies between the true vorticity field
and those computed by either of the two methods
(Fig. 9) are quite noticeable. Both methods of
evaluation show a reduction of about 25% in the
amplitude of the vorticity. This reduction is a
direct result of the interpolation’s spectral char-
acteristics and is not of concern here. There are
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FiG. 7. Theoretical field for one specification of the constants in Eq. (5). (a)
Streamfunction times 10° m? s™!, (b) Vorticity in units of 2.5 x 1078 s=1.

indications of the banded vorticity pattern in both
analyses, but the structural details differ signifi-
cantly. Along the east side of the major trough, the
component definition yields two distinct centers,
one on either side of the true maximum, rather
than one elongated maximum approximately in the
mid-portions of the positive band. Also, this
technique locates a relative minimum right in the
middle of the actual maximum. A similar phe-
nomenon occurs in the weaker positive vorticity
area over the eastern portion of the grid where the
one true maximum is broken into three portions

(only two are shown, owing to the contour interval
chosen). In contrast, the line integral technique
preserves the existence of a single maximum within
both regions. '

In general, these examples point out that, while
neither. evaluation technique produces a perfect
analysis of the vorticity and divergence fields,
the integral method produces a pattern which is
much more consistent with the actual field. This
enhancement in the analysis stems directly from the
easing of assumptions implicit in the evaluation of
the kinematic quantities.
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Fi1G. 8. Divergence times 107% s~!, calculated from approximation to the de-
fined streamfunction; shading denotes magnitudes in excess of 5.0 x 1076 s~1,
(a) Differential definition from component analysis, (b) direct evaluation via
line integral.

3. Inversion of the derived field to obtain the winds
a. Comments on boundary conditions

According to the Helmholtz theorem, the hori-
zontal wind v can be partitioned into irrotational
and nondivergent components

v =Vux + k X Vg, 6

where y is the velocity potential, s the streamfunc-
tion and Vj the horizontal gradient operator. Veloc-
ity potential and streamfunction are related to the

\

divergence (D) and vertical component of vorticity

(é) by
Vu?x = D, )

Vyzlll = {. (8)

If global values of D and ¢ are known or measured
directly, v can be determined within an additive
constant.

When the domain is restricted, v becomes de-
pendent upon boundary conditions. From (6) it is
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Fic. 9. Vorticity times 2.5 x 1075 s~!, calculated from approximation to
the defined streamfunction; shading denotes positive values. (a) Differential
definition from component analysis, (b) direct evaluation via line integral.

obvious that the boundary wind must satisfy

ax oY
= — — 9
n on ot ©
tv_ﬂl’_+_a_X (10)
on ot

when n and t are normal and tangential unit vec-
tors along the boundary curve.

Sangster (1960) has shown that the specification
of a constant velocity potential around the boundary
is tantamount to minimizing the total kinetic energy
of the nondivergent wind field and maximizing that

of the irrotational one. The reality of this particu-
lar energy partitioning is quite dependent upon
the geometry (scale) of the flow being considered.

Integrating (6) over the domain and applying
Green’s theorem yields

;[J vdo =§ nxdt +§ Ydt.
s r r

Thus, as pointed out by Stephens (1968), a constant
boundary condition in x (or ) requires that the
irrotational (or nondivergent) velocity be equal to
the observed velocity. Further, any meaningful
specification of boundary conditions on x and ,

an
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whether Dirichlet [via Eq. (11)], Neumann [via.
Eqgs. (9) and (10)], or mixed, requires a fore-
knowledge of the previously mentioned partition-
ing (Shukla and Saha, 1974). Such knowledge is
generally not available.

b. Variational adjustment of a preliminary wind
analysis

By making an adjustment to a preliminary wind
analysis (generally obtained via component inter-
polation), it is possible to obtain a final wind field
that has the ‘“measured’’ divergence and vorticity
content. At the same time, the difference between
the preliminary wind analysis and the final result
is also minimized. This adjustment can be cast as a
variational problem (Sasaki, 1970). The required
functional is

J=” (v — 92 + MKV XV —§
S

+ M(Vev — D)ldo, (12)
where:
v(x,y) final analyzed horizontal vector wind
¥(x,y) preliminary horizontal vector wind
&(x,y) measured vertical component of vorticity
D(x,y) measured horizontal divergence
A1, Ay  Lagrange multipliers.

After setting the first variation of Eq. (12) to zero
and applying Green’s theorem, the Euler-Lagrange
(EL) equations are found to be

v — ¥ = 15[V, + k X VAL, (13)
V-v=D, (14)
kVxv=¢ (15)

The associated natural boundary conditions (NBC)
are

§ A\ 8vedt = 0, (16)
r

§ Ak-8v X dt = 0. amn
r

By combining Eqgs. (13), (14) and (15), it is found

that the Lagrange multipliers must satisfy
V2\, = 2[€ — k-V X v],
V2N, = 2[D — V-v].

(18)
(19)

The problem reduces to solving Eqs. (18) and (19)
under the constraints of the NBC [Egs. (16) and
(17)).

There are myriad potential ways that the NBC can
be satisfied. However, by considering the integral
constraints upon the system, the options become
limited. First note

JOSEPH T. SCHAEFER AND CHARLES A. DOSWELL I1I

467
” Vihdo = 2 ” [D - V-¥ldo
S S
=2§ (v — ¥)'ndt =§> Q‘Edt, L 0)
r r on
” V2N do = 2” [€ — k-V X V]ldo
S S
= 23( (v — ¥)dt = % g}-\—ldt. 21
r r Bn

That is, the difference between the measured di-
vergence (or vorticity) and that obtained via dif-
ferentiation of the wind field is totally contained in
the normal derivative of A; (or A,) across the bound-
ary, or equivalently in the change of the normal (or
tangential) wind component at the boundary. Thus,
Neumann conditions require a preknowledge of the
wind field along the boundary.

Additional elucidation of the boundary conditions
comes from the requirements that

N

= JJ [2(v = ¥) — k X V\j]do = § A.ndt, (22)
N r
JJ Vhdo
N
N r

Eqgs. (22) and (23) emphasize that the two Lagrange
multipliers are not independent; the specification of
one multiplier along the boundaries puts internal
restrictions upon the other multiplier. This suggests
that use of any exotic boundary specification for
the multipliers may be self-defeating. Consequently,
the simplest specification which satisfies the NBC,
ie.,

)\1|r=)\2|r=0, (24)

seems to be reasonable. The implications of this
boundary condition can be seen by noting that
Eq. (13) requires

” (v — V)do = JJ 15[VA, + k X VN ]do
s s

r

r

Adt. (25)

Thus, when condition (24) is used, the total area-
averaged velocity of the final wind analysis is equal
to that of the preliminary one. This restriction is
not as harmful as it first appears since, at the expense
of noise in the analyzed field (and thus the derived
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TaBLE 1. Statistical error analysis comparison between Gauss-
ian interpolation and variational adjustment of a preliminary
wind analysis.

Variational
wind adjustment Gaussian
rms Algebraic rms Algebraic
u-component 0.50 0.09 0.51 0.01
v-component 0.35 0.08 1.18 -0.11
Speed 0.46 0.01 0.79 ~-0.40
Vector 0.61 0.46 1.28 1.12

quantities), it is possible to force the preliminary
wind analysis to within about 10-15% of the raw
observations (Endlich and Clark, 1963). Because
this noise is in the ‘‘first guess’’ field, it will not
seriously contaminate the final analysis.

To show the validity of variational wind inver-
sion technique, the Miyakoda streamfunction [Eq.
(5)] is again used. The defined vorticity (£ = V)
and divergence (D = 0.0) are used as the measured
values. The ‘‘first guess’” wind field (¥) is computed
via the same technique employed in the last sec-
tion. Using the improved second-order finite differ-
ence analogue to the Laplacian developed by
Schaefer (1977), Egs. (13), (18) and (19) under
" boundary -conditions (24) are numerically solved
for the vector wind field (v).

The wind field obtained via the variational tech-
nique shows marked improvement over the one ob-
tained by simple Gaussian interpolation of com-
ponents. For illustration, consider the v-component
field (Fig. 10). While the gross features of the de-
fined, variational and interpolated fields are in
general agreement, details of the pattern and magni-
tudes of the relative extrema in the variational
solution give a more realistic representation of the
true v field.

To compare the two analysis techniques statisti-
cally, bilinear interpolation is used to obtain wind
estimates at the observation points from the gridded
fields. This method of comparison is chosen to pro-
vide a standard technique that can be applied when
the true field is unknown. Preliminary testing has
shown that the statistics obtained in this way are
virtually identical to those obtained directly from the
gridded data, when theoretical fields are used. Statistics
from the comparison for the 62 data points interior
to the variational analysis grid are given in Table 1.
Vector error is defined by Shukla and Saha (1974) as

E= [(uo - ua)2 + (vo - Ua)z]llzy (26)

where the subscript o stands for observed and a for
analyzed. In each case, except the algebraic u-
component, the error is less for the variational
wind retrieval than for the objective component
interpolation. Thus, not only does this wind retrieval
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technique preserve the original divergence and
vorticity fields, but it also gives a statistically
improved wind field analysis.

c. Variational adjustment of the divergence and
vorticity

While the variational adjustment of a preliminary
wind analysis yields a very accurate solution, it is
computationally quite complicated. An alternative
exists which is more economical in terms of com-
puter core storage and eliminates the need for
numerical differentiation [Eq. (13)], which is re-
quired to find the grid-point wind components after
solution of the two Poisson-type equations [(18) and
(19)]. This method finds a wind whose divergence
and vorticity are as close to those measured as
possible under the restrictions of a boundary specifi-
cation of the winds. While this technique is less ac-
curate than the previous one, it is sufficient for
many applications.

As before, the method can be expressed as a
variational problem, but the restriction that the dif-
ference between preliminary and analyzed winds
also be minimal is removed. The required func-
tional is simply

I= JJ [(k-Vxv—§2+ (Vv —D)2ldo. (27)
s

Taking the first variation of Eq. (27) and applying
Green’s theorem yields

1581 = ” {~8v-V(V-v — D)
S . !

+ k-8v X V(k-V X & - Hldo + 3@ {(V-v — D)n
. N r

+ (k'V xv~— Ht]-dvide. (28)

The difference between the final and the measured
divergence (vorticity) is minimal when both integrals
vanish. The EL equations arise from the surface
integral while the NBC come from the line integral.

Breaking the surface integral into components
shows the EL equations are equivalent to

)
2] ) )
[ HE)

-5 2] ) oo
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~I5] -10| -8
-17.8 H2S|75|-2

_F1G. 11. v-component (m s~') analysis corresponding to defined streamfunc-
tion, obtained by variational adjustment of the divergence and vorticity; shading

: denotes positive values.

TABLE 2. Statistical error analysis comparison between Gauss-
ian interpolation and variational adjustment of divergence and
vorticity.

Variational
wind adjustment Gaussian
rms Algebraic rms Algebraic

All data points (73) interior to domain

u-component 0.47 0.20 0.53 0.00
v-component 1.80 0.48 1.21 0.02
Speed 1.06 0.63 0.79 -0.34
Vector 1.86 1.56 1.32 1.15

Excluding data within one grid increment of boundary,
62 data points remain

u-component 0.45 0.24 0.51 0.01
v-component 1.67 0.50 1.18 -0.11
Speed 1.01 0.63 0.79 —0.40
Vector 1.73 1.47 1.28 1.13

Excluding data within two grid increments of boundary,
51 data points remain

u-component 0.37 0.24 0.49 -0.03
v-component 1.60 0.65 1.24 -0.05
Speed 99 0.66, 0.85 —0.43
Vector 1.64 1.39 1.34 1.20

Excluding data within three grid increments of boundary,
46 data points remain

u-component 0.35 0.24 0.48 —-0.06
v-component 1.33 0.40 1.27 -0.07
Speed 0.84 0.55 0.85 -0.50
Vector 1.38 1.22 1.36 1.21

where m is the metric coefficient determined by the

analysis grid geometry. These are Poisson equa-

tions for the wind components and can be numeri-

cally solved under the restrictions of the NBC.
The NBC will be satisfied when either

(Vv—D)r=®'Vxv=-§|,=0, (31

or
&v|r = 0. (32)

Because of the interrelationship between V-v and
k-V X v; Eq. (31) does not provide viable boundary
conditions. Thus, solution requires condition (32).
This will be satisfied if the winds along the boundary
are specified via an independent analysis.

The validity of this wind retrieval technique is
tested using the same experiment employed in the
last section. The pattern in the analyzed com-
ponent fields is similar to that of the analytically
defined data. Fig. 11 shows the retrieved v-com-
ponent; this should be compared to Fig. 10a. Gradi-
ents in the retrieved field are quite similar to those
which actually exist. However, definite discrepancies
between the defined field and the analyzed field are
present, especially near the boundaries. Error
statistics obtained by comparing the analyzed
field to the observations for this method and for
the Gaussian component analysis scheme are given
in Table 2. As the domain of comparison is moved
away from the boundary (Shukla and Saha, 1974),
the variational technique improves relative to the
standard method.

The vorticity of the final wind analysis is shown
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FiG. 12. Vorticity times 2.5 X 107¢ s~!, obtained by variational adjustment;
shading denotes positive values.

in Fig. 12. This compares quite favorably with the
actual vorticity (Fig. 7b). The boundary effect is
dramatically shown by the analyzed divergence field
(Fig. 13). Near the center of the domain, the
analyzed divergence is effectively zero (remember
the true divergence is zero everywhere); however,
as the boundaries are approached, multiple fallacious
maxima and minima appear.

The quality of the analysis produced by this
technique can be enhanced by increasing the quality
of the wind analysis along the boundary. Never-

theless, even with the present boundary analysis,
when the outer three grid rows are omitted, a marked
improvement in the quality of the estimates for
vorticity (Fig. 12 vs Fig. 9a) and divergence (Fig. 13
vs 8a) occurs for this variational technique, com-
pared to the Gaussian interpolation, with virtually
no increase in the rms vector error (0.02 m s™1),

4. Application to real meteorological data

When observed data are analyzed, it is no longer
possible to declare one analysis technique definitely

T T T T 1T T 7T 1771771

T T @717 1T 177

T
[\sz ‘
0

FiG. 13. Divergence times 107¢ s™!, obtained by variational adjustment; shading
denotes magnitudes in excess of 5 X 10~¢ s,
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FiG. 14. Isophypse analysis (dam) for 1200 GMT 8 November 1977 and wind
observations (flag = 25 m s7!, barb = 5 m s~!, half barb = 2.5 m s7%).

better than another, as true divergence and vorticity
fields are unknown. Also, since a synoptic-scale
wind analysis is desired, measured wind vectors do
not necessarily represent the synoptic-scale field
(Shapiro, 1972). However, if divergence and vortic-
ity fields produced via the integral technique are
dynamically consistent with the geopotential field,
results of the preceding analytic experiments allow
us to assert that the variational technique produces
a viable approximation to the true synoptic-scale
wind field.

The example to be examined consists of the 50
kPa data for 1200 GMT 8 November 1977 (Fig. 14).
A long-wave trough is situated along the Rocky
Mountains with short waves positioned over the
Great Basin and along 105°W. A minor short-wave
trough is also present in the vicinity of the Potomac
River. Considerable wind shear and velocity con-
vergence are suggested in association with major
trough.

The divergence field produced by the component
calculation (Fig. 15a) indicates a relative conver-
gence maximum in the eastern portion of the long-
wave trough. In the direct analysis of divergence
(Fig. 15b) this maximum is replaced by a saddle
point, implying that the rotational component of
the flow dominates the divergent one around the
base of the trough. This difference in representa-
tion is also evident in the vorticity analysis. The
component definition (Fig. 16a) indicates two. dis-
tinct positive vorticity centers internal to the system,
one with each short wave. In contrast, the integral
computation (Fig. 16b) suggests that these minor

short waves are not significant and locates one posi-
tive center at the approximate base of the long
wave. The 50 kPa analysis 12 h later (not shown)
shows little evidence of these short waves but,
rather, reveals an eastward progression of the major
trough.

As an extremely crude approximation, one would
expect convergent (divergent) areas at 50 kPa to
correspond to regions of negative (positive) vorticity
advection (Saucier, 1955, p. 355). This relationship
is more nearly valid for the line integral analysis
than when the divergence and vorticity are com-
puted from derivatives. For example, the line inte-
gral divergence shows a greater tendency for a
north-south divergence axis east of the trough, in
the region of positive vorticity advection. Thus,
there is a heuristic consistency in the proposed
analysis method which is lacking in a more con-
ventional objective wind interpolation technique.

Wind component fields obtained via variational
adjustment of a preliminary wind analysis are shown
in Fig. 17. Also indicated are the changes to the
Gaussian wind component analysis. Except in the
immediate neighborhood of the trough, changes
are less than 5 m s~!. The only major alternation
to the u-component field is in New Mexico where
the ‘“‘westerly”’ component is reduced by about
5 m s~*. This reduction is a reflection of decreased
convergence along the axis of the trough and points
to an inconsistency between the wind observation
at Albuquerque and the surrounding stations.

The only significant v-component change (reduc-
tion of about 6 m s™!) appears in west Texas, re-
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Fi1G. 15. Divergence times 2.0 X 107 s~! at 50 kPa, 1200 GMT 8 November
1977; shading denotes positive values. (a) Differential definition from com-
ponent analysis, (b) direct evaluation via line integral.

flecting the spectral restriction of the analyses (wind,
divergence and vorticity) to the synoptic scale.
This change results from the decreased emphasis
placed on the short waves by the direct analysis,
reducing the v-component wind shear across the
trough (vorticity).

5. Summary

The essential problem of the non-uniqueness of
vector interpolation has been investigated, with
applications to meteorological wind fields in mind.

Since horizontal divergence and the vertical com-
ponent of relative vorticity are fundamental aspects
of the horizontal vector wind field, it is clearly de-
sirable to preserve these properties during any
interpolation of the winds. To this end, a method
of evaluating divergence and vorticity directly from
wind observations has been developed. The tech-
nique is applied to two analytically defined fields
to show that the results obtained can improve
upon those obtained via component differentiation
of gridded winds. While specific results may be
dependent upon the interpolation technique em-



474

MONTHLY WEATHER REVIEW

VoLuME 107

17 7T 71T T 171 T

LI S N A I T

FiG. 16. Vorticity times 10~% s at 50 kPa, 1200 GMT 8 November 1977;
shading denotes positive values. (a) Differential definition from component
analysis, (b) direct evaluation via line integral.

ployed, the same algorithm is used to grid divergence
and vorticity ‘‘observations’’ as for the wind com-
ponents. Thus, this aspect of the problem does not
detract from the generality of the results.

Having available what are effectively ‘‘observed”’
fields of divergence and vorticity makes the problem
of reconstructing the wind field from these quanti-
ties somewhat different from previous treatments.
Using variational principles, two methods for
retrieving gridded wind fields (interpolation in a vec-
tor space) are developed. One method forces the
analyzed wind field to have the measured divergence

and vorticity while conserving the area-averaged
velocity of ‘a preliminary analysis. The second
method minimizes the deviations in the wind field’s
divergence and vorticity from the ‘‘true’’ values
while maintaining the boundary wind component
values from a preliminary analysis. Both of these
techniques are applied to an analytic field and
results suggest that the reconstructed winds are
markedly better than those produced by a typical
objective analysis.

The entire analysis package is applied to an
actual meteorological data set. The most striking fea-
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Fi1G. 17. Wind analysis (m s™') at 50 kPa, 1200 GMT 8 November 1977. Solid
lines indicate retrieved winds via variational adjustment of preliminary analysis;
dotted lines denote the changes (m s~!) to the preliminary analysis; shading
denotes changes in excess of 5 m s~!. (a) u-component, (b) v-component.

ture of the results is the consistency between fields.
The divergence, vorticity and wind component
analyses all contain’approximately the same degree
of roughness and from heuristic arguments are
dynamically compatible.
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