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ABSTRACT 
 

A method for ranking severe weather outbreaks of any type using a linear-weighted multivariate scheme 
has been introduced recently.  The results of using this ranking method indicated that the scheme was 
capable of identifying the most significant severe weather outbreaks.  However, the inclusion of days in 
which numerous reports were widely dispersed across a large region, or in which multiple clusters of 
reports that were geographically widely separated, was problematic.  Though the studies included a 
variable (the so-called middle-50% parameter) that was effective in identifying these cases, a new way was 
needed to account for these days in a manner that agrees with subjective perceptions of these events.  A 
candidate scheme introduced here uses nonparametric kernel density estimation to identify clusters of 
severe weather reports associated with a single severe weather event.  Clusters with relatively few reports 
or sparse coverage within the region associated with the event then can be excluded quite easily.  This 
technique also allows for multiple, regionally-separated clusters of severe reports to be considered in one 
day.  After identifying clusters of severe weather events from 1960-2008, the cases are ranked and 
classified in a way similar to past research, using multivariate linear-weighting and cluster analysis, 
respectively.  Results suggest that the most significant severe weather outbreaks again are identified 
appropriately, and the cases could be classified as major tornado, hail-dominant, wind-dominant, and minor 
mixed-mode events.   

 
–––––––––––––––––––––––– 

 
1.  Introduction 

 
Recent studies have attempted to rank severe 

weather events using archived reports of 
tornadoes, severe winds, wind damage, and hail 
for the purposes of identifying prototypical 
tornado and primarily nontornadic outbreaks 
(Doswell et al. 2006―hereafter D06) and for 
determining the relative severity of outbreaks of 
any type (Shafer and Doswell 2010―hereafter 
SD10).  Both studies used linear-weighted 
multivariate indices to rank cases that met initial 
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criteria for their inclusion (e.g., a day in which 
seven or more tornadoes occurred was 
considered for the ranking of tornado outbreaks 
in D06).  These studies resulted in rankings of 
severe weather events that agreed with subjective 
notions, were relatively robust to modifications 
of the weights for the multiple variables used to 
rank the cases, and could be reproduced using 
the same technique. 
 

A complicating factor in the ranking of 
severe weather outbreaks is the presence of large 
geographic scatter of the reports on a subset of 
the days considered.  Such scatter can manifest 
itself in various ways (see Fig. 2 in SD10).  For 
example, some days feature widely dispersed 
reports of severe weather throughout the United 
States.  Other days consist of multiple clusters of 
severe reports separated by large areas of little or 
no observed severe weather.  Some days exhibit 
a combination of the two effects, with a large 
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number of widely dispersed reports separated 
from a cluster of reports. 

 
As severe weather outbreaks generally are 

perceived to consist of a large number of severe 
reports over a geographically compact region, 
accounting for days featuring large geographic 
scatter is critical for the identification of 
prototypical outbreak days or for the ranking of 
these events in a way that agrees with these 
subjective perceptions.  Elimination of these 
days based solely on the number of reports is 
ineffective, as many days exhibiting such large 
geographic scatter also comprise a large number 
of severe reports. 

 
D06 introduced a method to account for 

large geographic scatter, using the distributions 
of the latitudes and longitudes of the reports.  For 
both latitude and longitude, the middle 50% of 
the distribution (i.e., between the 25th and 75th 
percentiles) was determined as a range of latitude 
and longitude (see Fig. 1).  As shown, this results 
in a latitude/longitude “box”, the area of which 
can be parameterized by the product of the 
latitude-longitude ranges.  A large value suggests 
substantial geographic scatter, whereas a small 
value suggests limited geographic scatter (as 
demonstrated in Fig. 1).  D06 defined this as the 
middle-50% parameter, which was found to be 
effective in eliminating appropriate cases from 
the top rankings of primarily nontornadic 
outbreaks (D06) and from the major and 
intermediate outbreak days (SD10). 

 
However, both studies raised questions 

about the middle-50% parameter’s utility.  
Specifically, on days with multiple 
geographically-separated clusters of reports, the 
technique treated all of these clusters as one 
outbreak.  Typically, such days feature multiple 
synoptic-scale systems, indicating these events 
should be considered separately (e.g., Fig. 2).  
The AMS glossary, for example, states tornado 
outbreaks are associated with a single synoptic-
scale system (Glickman 2000), rendering the 
combination of separate clusters as single events 
undesirable.   

 
The purpose of this study is to consider 

severe weather events based on clusters of severe 
reports on a given day, rather than based on the 
24-h period alone, to rank these events based on 
relative severity, and to classify these events 
based on the characteristics of the severe weather 
reports associated with the particular cluster.  

Section 2 describes the data and methods used to 
identify, rank, and classify these severe weather 
events.  Section 3 demonstrates the 
characteristics of the techniques on various types 
of severe weather report clusters.  Section 4 
details the results of the rankings of the severe 
weather events.  Section 5 presents the findings 
when classifying the severe weather events.  
Section 6 summarizes the study and discusses 
some remaining issues associated with the 
current work. 

 
2.  Data and methods 

 
As in D06 and SD10, the Storm Prediction 

Center severe weather database (Schaefer and 
Edwards 1999) was used to obtain the severe 
reports on each day from 1960–2008.  The 
database includes information on the type of 
report (tornado, hail, or straight-line wind), the 
intensity (e.g., hail size or wind speed) or Fujita-
scale rating, and various geographic and societal 
aspects of the reports (e.g., location or track, 
number of casualties, etc.).  The variables 
considered when ranking the outbreaks were the 
same as those in SD10 (see their Table 1), except 
for the middle-50% parameter. 

 
Each 24-h period from 1 January 1960 to 31 

December 2008 was considered independently.  
The period of consideration was 1200 UTC on 
the nominal date to 1159 UTC the following day.  
Any severe weather event that continued past 
1200 UTC on the following day, perhaps for 
multiple days, was not considered, though these 
events were rare in our dataset.   

 
As the goal of this work was to consider 

clusters of severe reports as a severe weather 
outbreak, rather than just the outbreak day, a 
technique for overcoming the limitations of the 
middle-50% parameter was necessary.  The use 
of kernel density estimation (KDE; Bowman and 
Azzalini 1997) was employed for this particular 
purpose.  KDE approximates the probability 
density function at a particular point.  
Specifically, a one-dimensional KDE can be 
represented as the following: 
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where n is the number of severe reports on a 
given day, Kh is a kernel function, and h is a  
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Figure 1:  Examples of the middle-50% parameter for:  a) 12 March 2006 and b) 28 July 2006.  The blue 
box indicates the maximum and minimum latitudes and longitudes of severe weather reports (black dots).  
The red box indicates the 25th and 75th percentiles of the reports’ latitudes and longitudes.  The green dot 
indicates the median latitude and median longitude of severe reports.  From Shafer and Doswell (2010). 
Click image to enlarge. 
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Figure 2:  a)  Severe reports on 1 May 1997, with severe wind gusts or wind damage in blue, severe hail in 
green, and tornadoes in red.  b)  North American Regional Reanalysis (NARR, after Mesinger et al. 2006) 
500-hPa wind speeds (filled contours in m s-1), winds (barbs in kt), and geopotential heights (contours in m) 
valid at 0000 UTC 2 May 1997.  c)  NARR 0-3 km energy helicity index (EHI) valid at 0000 UTC 2 May 
1997. Click image to enlarge. 
 
tunable smoothing parameter (bandwidth).  
Typically, the kernel function implemented is 
Gaussian (e.g., Brooks et al. 1998), and that is 
the case for this study: 
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It can be shown that for multivariate KDE, 
(1) can be represented as: 
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where d is the number of dimensions.  For this 
study, d was 2, as the severe reports are reported 
as latitudes and longitudes.  The bandwidth 
(which can be different for each dimension, but 
was not in this study) and the threshold value of 
the approximated probability density function 
(PDF) can be used to determine the reports 
associated with a particular geographic cluster.  
Because d=2, Eqn. (2) is modified for two 
dimensions by taking the square of itself, such 
that the quantity (x – xi) becomes a two-
dimensional distance Di.  The end result is: 
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The observed reports for a given day either 

were associated with a grid point for various map 
projections using objective analysis techniques 
(as in Brooks et al. 1998), or were computed as 
distances from all of the grid points for a 
particular map projection directly.  Thus, the 
distance quantity in Eqns. (2)–(4) either was 
defined in terms of grid point separation or in 
terms of actual distance.   The bandwidth is a 
measure of the uncertainty associated with these 
distances (see Brooks et al. 1998) and requires 
modification based on the technique used to 
identify the clusters of severe reports.  As 
Section 3 shows, differences among the 
techniques and map projections were minor, as 
expected, so long as the bandwidth and PDF 
thresholds were modified accordingly.1   

 
If the reports were converted to a grid 

initially, the KDE was computed for each of the 
points on the same map projection the report 
locations were converted to, and contours of the 
KDE were drawn on these projections.  This will 
be referred to as the grid point method 
henceforth.  On the other hand, if the 
observations were not converted to a grid 
initially, the distances from each grid point of a 

                                                           
1 Note that the PDF threshold must be modified 
if the bandwidth is modified, as f(x) is a function 
of the bandwidth [see Eqs. (1)–(4)]. 

map projection (of which various types were 
considered) to each severe report were 
calculated, and contours of the KDE were 
computed on these projections.  This will be 
referred to as the distance method hereafter.  
After selection of bandwidth and PDF threshold 
value, any point falling on or within the contour 
was considered to be associated with the cluster 
of severe reports.   

 
Modification of a map projection’s grid 

spacing could be accounted for by selecting 
different values of bandwidth and probability 
thresholds.  This was unnecessary, however, if 
the quantity (x – xi) was measured in terms of 
latitude and longitude, or in terms of direct 
distances, since the grid spacing would not affect 
these values for grid points of various size at the 
same location.  Therefore, the choice of grid 
spacing for a map projection is essentially 
arbitrary, though relatively coarse grid spacing is 
preferred because of reduced computational 
demand.  For the latitude-longitude map 
projection, 1º grid spacing was used. 

 
After all of the clusters for the 49-yr period 

were identified, a subset of these cases was 
removed to eliminate those events with a 
relatively small number of reports or relatively 
sparse coverage within the region determined to 
be associated with the event.  This was done by 
calculating two variables for each cluster 
considered:  the total number of reports within a 
cluster, and the ratio of reports to grid points 
associated with the cluster (hereafter, the density 
ratio).  A cluster was removed from 
consideration if the total number of reports 
within the region associated with the cluster was 
below the detrended mean value for all of the 
clusters for that particular year, or if the density 
ratio for the particular cluster was below the 
detrended mean value for all of the clusters for 
that particular year. 

 
As the total number of severe reports in a 

given year substantially increases from 1960 to 
2008 (see Brooks et al. 2003; Doswell et al. 
2005; D06; Verbout et al. 2006; SD10), the 
annual means of the two variables were 
detrended to account for these nonmeteorological 
artifacts.  The process of detrending was the 
same as that incorporated by D06 and SD10; a 
linear regression to the logarithm of the annual 
means was computed for each of the variables.  
The detrended annual mean is the value of the 
regression curve for the relevant year.  Based on 
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For the remaining cases, annual sums of the 
severe weather reports included in the linear- 
weighted, multivariate indices used to rank and 
classify the outbreaks (SD10, their Table 1) were 
then tabulated.  These sums were divided by the 
number of clusters for the relevant year.  These 
“cluster means” then were detrended, if 
necessary, in the same manner as in D06 and 
SD10 (examples in Fig. 4).  As the values for 
each of the variables included in the indices can 
have markedly different magnitudes, all 
variables were standardized (transformed to have 
zero mean and a standard deviation of unity) as 
follows: 

the small values and exponential increase of the 
detrended means over the 49-yr period (e.g., Fig. 
3), a large number of the clusters on a given year 
featured a very small number of reports and/or 
sparse coverage of the reports within the event 
region.  Unsurprisingly, the number of clusters 
on a given year increases from 1960–2008 (not 
shown), which means the number of cases 
considered increases for more recent years.  This 
is a result of the relative lack of reporting, 
particularly of nontornadic severe weather or of 
relatively minor severe weather events, in the 
early years of the study period.  Thus, although 
we have attempted relatively simple accounting 
for secular changes in the dataset, some impact 
from those changes is inevitable. 
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In (5), i represents a particular member of 

the n variables used in the ranking index, and j is 
one of the m clusters considered for ranking.  
The mean is symbolized by ,x  and the standard 
deviation is represented as s, with their well-
known formulas: 

 

∑
=

=
m

j

j
ii x

m
x

1

)(1
   (6), 

 

2

1

)( ][
1

1
i

m

j

j
ii x

m
s μ−

−
= ∑

=

 (7). 

 
The standardized variable )(~ j

ix is then given 
a weight wi, and the final score of the index is 
given by: 
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Figure 3:  Examples of detrending for: a) the 
annual mean number of reports for a given 
cluster, and b) the annual mean density ratio, 
when considering all of the clusters for a 
particular year.  The results are for a latitude-
longitude map projection with 1º grid spacing 
spanning the conterminous United States, using a 
bandwidth of unity for each dimension, and a 
threshold probability of 0.001 for a grid point to 
be associated with each severe weather event. 
Click image to enlarge. 

 
Thus, the score of the index is the sum of the 
products of the weights and standardized values 
divided by the sum of the weights.  In this 
manner, it is the relative weights of the variables 
that are pertinent.  Variables were weighted with 
values ranging from 0 to 10, as all of the 
parameters were associated positively with the 
significance of severe weather events. 
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Figure 4:  Examples of detrending for the annual means of the clusters with total number of reports and 
density ratios above the detrended annual means.  Variables labeled in each chart. Click image to enlarge. 
 

This method permits modifying the weights, 
for the computation of several different indices, 
to determine if the ranking of the severe weather 
events is susceptible to substantial variability.  In 
general, the same weights that were used in 
SD10 (see their Fig. 4 and Section 3a) were used 
in this study as well.  However, the density ratio 
replaced the middle-50% parameter in this study, 
and it was given a weight of 3 for each of the 
indices (similar to the equivalent treatment of the 
middle-50% parameter for all of the indices used 
in D06 and SD10). 

 
Given that our objectives are similar to those 

of D06 and SD10, the techniques used in this 
study and that of SD10 are intentionally similar, 
as the former’s technique was relatively simple 
to implement and easy to reproduce.  Optimality 
of our methods cannot be shown but is not 
necessarily required, as no known “truth” of 
severe weather outbreak rankings exists.  
Various other methods could have been used to 
detrend the variables, and other types of severe 
weather reports could be used in the multivariate 

indices.  The reader is referred to D06 and SD10 
for the reasons involved in the selection of the 
variables and the various methods used in the 
ranking of these events. 

 
3.  KDE analysis 
 

To identify severe weather events by 
clusters of severe reports for a given day, 
modifying Eqn. (4) by changing the bandwidth 
(h) for a given map projection and analyzing 
various threshold values of f(x) were required. 
Varying the bandwidth in KDE is analogous to 
varying the smoothing parameter used in 
distance-dependent, weighted-average methods 
for objective analysis, described in Barnes (1964; 
see his Fig. 4 which shows the density of upper 
air stations using a Gaussian kernel).    Using the 
grid point method and a latitude-longitude map 
projection with 1º grid spacing, analysis of the 
severe reports (Fig. 5a) and the resultant two-
dimensional PDF contour charts for various 
modifications of the bandwidth and contour 
thresholds (Fig. 6) illustrate the process.  This
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Figure 5:  As in Fig. 2a, for a) 29 April 1991, b) 28 July 2006, c) 6 June 1981, and d) 18 July 2006. Click 
image to enlarge. 
 
day featured three distinct regions of severe 
weather:  the Southeast, the Upper Midwest, and 
Deep South Texas.  Thus, the selected bandwidth 
and PDF threshold should capture these three 
locations as distinct events.  This clearly 
excludes options with relatively high bandwidths 
(Fig. 6d), as the low-valued contours indicate the 
Midwest and Southeast events as one severe 
weather region.  At the same time, the outermost 
contour (the 0.001 threshold) does not enclose 
the three reports in Deep South Texas. 

 
Conversely, low bandwidths typically result 

in separate clusters for reports that are relatively 
close together.   The two regions indicated in the 
Upper Midwest using bandwidths of 0.5 for both 
the latitude and longitude dimensions are 
undesirable (Fig. 6a), given their relatively close 
proximity.  Though there is some separation of 
the reports (Fig. 5a), the relatively small distance 
between these areas suggests distinct synoptic-
scale systems are not associated with the two 
regions.  Furthermore, the contours are not 
smooth, which is also undesirable.   

The objective, therefore, is to find a range of 
bandwidths falling in between the two extremes 
(as in Figs. 6b,c).  In general, lower bandwidths 
in this range were preferred, as these had a 
tendency to include more minor, isolated events 
into separate clusters at thresholds that also did 
not combine regionally separate severe weather 
events.  Based on Fig. 6, bandwidths of 1 for the 
latitude and longitude dimensions were preferred 
over 1.5. 

 
Selection of PDF thresholds primarily was 

determined by the lowest threshold that included 
the most reports while also not merging 
regionally separate events.  For example, in 
Fig. 6d, the second contour (0.005 threshold) 
would be selected over the outermost contour 
(0.001 threshold), as the 0.001 threshold 
combined the two regionally separate clusters of 
reports.  However, selecting a threshold too high 
results in separating relatively close regions, 
such as the 0.005 threshold (second contour) in 
Fig. 6b. 
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Figure 6:  Two-dimensional KDEs of the probability density functions for severe reports from 1200 UTC 
29 April 1991 to 1159 UTC 30 April 1991, using bandwidths of a) 0.5, b) 1, c) 1.5, and d) 2 for the 
latitudinal and longitudinal directions.  Plots use severe reports converted to a latitude-longitude map 
projection with 1º grid spacing.  For each plot, outermost contour is 0.001; second outermost contour is 
0.005. Click image to enlarge. 
  

Of course, bandwidth and threshold 
selection occurred only after analyzing a large 
number of cases.  An analysis of additional cases 
shows that the bandwidth of 1 and the threshold 
of 0.001 (outermost contour; Figs. 7a,c,e) are 
reasonable selections for various types of events.  
For example, as shown in Fig. 5b on 28 July 
2006, distinct regions of reports are observed 
near Lake Superior and the East Coast, with 
dispersed reports in the central and southern 
plains and a small cluster in the Southwest. 

Bandwidths of 1 to 1.5 with thresholds near 
0.001 identify the two clusters with large 
numbers of reports well with limited coverage of 
the reports in the central and southern plains 
(Figs. 7a,b).  On 6 June 1981, relatively few 
severe reports were scattered through the 
northern High Plains, Southeast, and Northeast 
(Fig. 5c).  The two-dimensional PDFs were quite 
different between the two bandwidths, the 
smaller bandwidth being associated with a larger 
number of clusters (Figs. 7c,d).
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Figure 7:  a)  As in Fig. 6a, for 28 July 2006.  b)  As in Fig. 6b, for 28 July 2006.  c)  As in (a), for 6 June 
1981.  d)  As in (b), for 6 June 1981.  e)  As in (a), for 18 July 2006.  f)  As in (b), for 18 July 2006. Click 
image to enlarge. 
 
Preference for one bandwidth over the other is 
not obvious here; however, the initial criteria for 
event consideration when ranking and classifying 
the outbreaks (see Sections 2 and 4) would 
eliminate these clusters in either case.  The 
number of reports within each cluster is small 
using the bandwidth of 1, and the density ratio of 
each cluster is small using the bandwidth of 1.5.   
 

On 18 July 2006, numerous severe reports 
were observed over much of the eastern US, with 
a small, separate cluster in Alabama and 
Mississippi (Fig. 5d).  Widely dispersed reports 
were observed in the plains, and a small cluster 
of reports was observed in southern Arizona.  
The separate cluster in Alabama and Mississippi 
was identified using a bandwidth of 1, as well as 
the cluster in Arizona (Fig. 7e).  This was not the 
case for the bandwidth of 1.5, unless the PDF 

threshold was increased for the former and 
decreased for the latter (Fig. 7f).  Cases like 
these appear to be handled somewhat more 
appropriately by the lower bandwidth, resulting 
in its selection for the latitude-longitude map 
projection with 1º grid spacing. 
 

Using a different map projection required 
modifications to bandwidth and PDF threshold 
selection, if the distance quantities were defined 
in terms of grid points (rather than latitudes and 
longitudes, or distances between the grid point 
and the location of the severe report).  For 
example, a Lambert conformal projection with 
54-km grid spacing, using the grid point method, 
also was conducted to compute KDE estimates 
of severe weather clusters for each day in the 
49-yr period (Fig. 8).  If the bandwidth and PDF 
threshold were identical (in magnitude) to that of
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Figure 8:  As in Fig. 6, using the grid point method and a Lambert conformal projection with 54-km grid 
spacing, with a bandwidth of a) 1, b) 2.5, and c) 5.  Shading begins with a threshold of 0.001.  d)  As in (b), 
shading beginning with a threshold of 0.00025. Click image to enlarge. 
 
the latitude-longitude projection, the results were 
markedly different (cf. Figs. 6b and 8a).  These 
differences were anticipated, as the grid boxes 
and the grid spacing were different for the two 
projections.  Essentially, the Lambert conformal 
projection (with lower grid spacing) required a 
substantially higher bandwidth and a lower PDF 
threshold to replicate the characteristics of the 
latitude-longitude projection (Fig. 8d). 
 

Using relatively high bandwidths for the 
Lambert conformal projection resulted in 
characteristic shapes that did not match the 

reports well (cf. Figs. 5a and 8c), indicating too 
much smoothing.  Using a bandwidth of 2.5 for 
the Lambert conformal projection seemed to 
replicate the characteristic shapes of the two 
biggest clusters for the latitude-longitude map 
projection well (cf. Figs. 6b and 8b), but the PDF 
threshold of 0.001 did not capture the reports in 
Deep South Texas.  Lowering the threshold to 
0.00025 (Fig. 8d) solved this problem, and the 
coverage for each of the three clusters was quite 
similar to that of the latitude-longitude projection 
with a bandwidth of 1 and PDF threshold of 
0.001.  Note that these changes to the bandwidth
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Figure 9:  Scatter plots showing the grid points that exceed a specified probability density function 
threshold, using KDE of the severe reports from 1200 UTC 29 April 1991 to 1159 UTC 30 April 1991.  a)  
The grid point method (see relevant text) is used, with a latitude-longitude projection with 1º grid spacing, 
a bandwidth of 1, and a PDF threshold of 0.001.  b)  The grid point method is used, with a Lambert 
conformal projection, 54-km grid spacing, a bandwidth of 2.5, and a PDF threshold of 0.0003.  c)  The 
distance method (see relevant text) is used, with a latitude-longitude projection, 1º grid spacing, a 
bandwidth of 150 km, and a PDF threshold of 0.000014. Click image to enlarge. 
  
are similar to the changes in grid spacing 
between the two map projections.  A 1º latitude-
longitude projection is generally on the order of 
100–150-km grid spacing.  This is approximately 
2-2.5 times the grid spacing of the Lambert 
conformal projection.  As the magnitude of the 
bandwidth for the Lambert conformal projection 
is increased by a factor of 2–2.5, the PDF 
threshold is approximately 1/4–1/6 of its value 
for the latitude-longitude projection.  This 
finding indicates that the selection of alternative 
map projections should not change the results 
substantially, if the bandwidth and PDF 
threshold are changed accordingly. 

 
Finally, the differences when using the grid 

point method versus the distance method are also 
quite minor (Fig. 9).  Thus, initially converting 
the severe reports to a grid did not alter the 
areal coverage of a severe weather cluster 
substantially, as long as the bandwidth and PDF 
threshold were modified accordingly.  Because 
of this finding, the results for the grid point 
method, using the latitude-longitude map 
projection, will be discussed for the rest of the 
paper. 
 

The selection of the bandwidth and PDF 
thresholds clearly is subjective.  However, the 
objective of reproducibility for ranking and 
classifying severe weather outbreaks is met, 
provided the same bandwidth and PDF 
thresholds are used.  Furthermore, selection of 

slightly different values would not alter the 
results substantially for the most significant 
severe weather events.  For example, if a 
bandwidth of 1 or 1.5 is chosen using the 
latitude-longitude projection, the areas enclosed 
by the 0.001 PDF threshold are quite similar for 
the two most significant events on 28 July 2006 
(e.g., see Figs. 7a,b).  The results generally are 
reasonably robust to modifications of the 
bandwidth and PDF threshold selections, as long 
as these selections avoid the tendencies shown in 
Figs. 6a,d. 

 
The final step in the KDE analysis is to 

eliminate the cases that would not be classified 
readily as a severe weather event or outbreak.  
The criteria for such elimination were selected 
somewhat arbitrarily, but the objective was to 
remove cases with relatively sparse coverage of 
reports within a cluster or with relatively few 
reports within a cluster.  These cases, in addition 
to not qualifying as significant severe weather 
events, also tended to be handled more variably 
by the KDE scheme (e.g., see Figs. 7c,d). 

 
Any cluster in which the number of reports 

within the region was less than the detrended 
annual mean for a cluster was removed from 
consideration (refer to Fig. 3).  The detrended 
annual mean number of reports for a cluster was 
small (from ~5 in 1960 to ~43 in 2008), as 
desired, to ensure that as many cases considered 
to be significant severe weather events as
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Figure 10:  a) The index scores (y-axis) and rankings (x-axis) of each of the 6072 cases for each of the 
indices in the study (labeled).  b)  The deviations (y-axis) of each of the indices (labeled) from the mean 
score of all the indices for a particular rank (x-axis). Click image to enlarge. 
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Figure 11:  a) The ranking index scores (y-axis) for each of the 26 indices (x-axis; N0=1, N1=2, etc.) for the 
top 25 outbreaks based on the rankings of the N15 index.  b)  The rankings for each of the 26 indices [as 
indicated in (a)] of the top 25 outbreaks based on the ranking of the N15 index.  c)  As in (a), for the bottom 
25 cases based on the N15 index.  d)  As in (b), using the bottom 25 cases based on the N15 index.  Four 
cases of each type are in bold for convenience. Click image to enlarge. 
 
possible were included.  For the latitude-
longitude map projection with 1º grid spacing, 
using a bandwidth of 1 and a PDF threshold of 
0.001, a total of 6072 cases were retained. 
 
4.  Outbreak rankings 
 

After removal of the report clusters 
consisting of few reports or sparse coverage, 
annual means of the variables used in the linear-
weighted multivariate indices to rank the 
outbreaks were computed (i.e., the average value 
per cluster for a particular year).  Variables with 
secular trends in the annual means were 
detrended (e.g., Fig. 4).  Each variable 
(detrended or otherwise) was standardized as in 
Eqs. (5)–(7), and the scores for each cluster were 
computed as in Eq. (8).  The relative weights of 
the variables were altered to develop 26 indices, 
the weights being equivalent to those of SD10 
(their Fig. 4), with the same notation.  As Section 

2 discussed, the middle-50% parameter was 
replaced by the density ratio, and the density 
ratio was given a weight of 3 for each of the 26 
indices. 
 

As explained in SD10, there are essentially 
two sets of indices.  The first set, which includes 
indices N0–N16 and N20, gives nonzero weights 
for all of the tornado variables.2  These are 
referred to as the “all-tornado indices”.  The 
second set, which includes N17–N19 and N21–
N25, gives nonzero weights to only two of the 
tornado variables (which are changed among the 
indices).  These are referred to as the “two-
tornado indices”.  The reasons for developing 
these two sets of indices include an investigation 
of the volatility of the rankings when a large 
number of the variables are removed, to 

                                                           
2 The N0 index is the control, in which each 
variable is given equal weight. 
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Figure 12:  a)  As in Fig. 11a, for three specific events (17 April 1995, 20 April 1995, 2 May 1997) as 
referenced in the text.  b)  As in Fig. 11b, for the cases in (a). Click image to enlarge. 
 
counteract a negative bias for severe report 
clusters with a large number of significant 
nontornadic events, and a determination of the 
additional explanatory power of highly-
correlated tornado variables.  Within the two sets 
of indices, modifications to the weights 
investigated the preference toward particular 
tornado variables and the changes in the rankings 
when giving significant nontornadic reports 
relatively high weights.  The reader is referred to 
SD10 for more explanation regarding the choice 
of variables and their weights. 

 
The scores for each of the 6072 cases 

obtained using the grid point method for the 
latitude-longitude projection were computed for 
all 26 indices (plotted as a function of rank in 
Fig. 10).  There were three main findings:  (1) 
The highest-scored (approximately 250) cases 
have a very steep negative slope (when plotted as 
a function of rank), analogous to the first ~200 
cases in SD10 (cf. their Fig. 6).  The next ~500 
cases have a smaller but relatively substantial 
negative slope.  The final 5250 cases have very 
small to nearly neutral slopes (analogous to the 
middle ~1000 cases in SD10).  The deviations of 
the individual index scores from the mean score 
of all the indices for each rank (Fig. 10b) 
indicate substantial noise and relatively large 
deviations for the top 200–250 cases, gradually 
less noise and smaller deviations for the next 500 
cases, and virtually no noise and small deviations 
for the final 5000 cases.  These tendencies 
indicated that the rankings of the top cases were 
reasonably consistent no matter what index was 
used (e.g., Figs. 11a,b), whereas the rankings 
were relatively volatile for the lower cases (e.g., 

Fig. 12―see also SD10 for more details).  (2)  
None of the curves exhibit a second steep 
negatively sloped section analogous to the final 
~200 cases in SD10.  This was an intentional 
outcome of the study.  That is, the cases with 
substantial geographic scatter and/or relatively 
few reports for a given event have been excluded 
successfully from consideration.  (3) Two 
distinct groups of curves are present.  The group 
of curves with a steeper slope for the top cases 
and a more neutral slope for the remaining cases 
consists of the all-tornado indices.  The other 
group of curves comprises the two-tornado 
indices.  These differences are more noticeable 
than in SD10, and are likely a result of the 
strong correlations among the tornado variables 
(SD10; their Section 3a).  Additionally, the two 
groups of curves intersect twice.  The first 
intersection occurs in the high-ranked portion 
of the cases, and the second occurs at around 
the 2500–3000 ranks.  These results suggest that 
the modifications of the weights within the two 
groups of indices do not affect the rankings 
substantially, but removing a subset of the 
tornado variables from the indices can affect the 
rankings of the cases noticeably.  This is 
confirmed from inspection of Figs. 11b and 12. 
 

As an example of this last point, consider 
the exclusion of the 1 March 1997 tornado 
outbreak (the orange bold curve in Figs. 11a,b; 
reports in Fig. 13a) from the top 25 outbreaks in 
the two-tornado indices (N17–N19 and N21–
N25) and its presence in the remaining indices.  
This is a result of the relative lack of nontornadic 
reports on that day.  Some other cases exhibit 
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Figure 13:  As in Fig. 2a, for a) 1 March 1997, b) 20 June 1974, c) 11 April 2006, and d) 18 October 1996. 
Click image to enlarge. 

 
this behavior (e.g., 15 November 2005; not 
shown), indicating a potential drawback of 
removing some tornado variables from 
consideration.  These days commonly were not 
considered in SD10 because the total number of 
severe reports was below the top 30 days for that 
year (true for both 1 March 1997 and 15 
November 2005).  The new scheme presented in 
this study allows for such days to be considered 
while simultaneously excluding cases with 
excessive geographic scatter.  

 
On the other hand, the presence of the 20 

June 1974 severe weather outbreak (not shown in 
Fig. 11; reports in Fig. 13b) in the top 25 
outbreaks of the two-tornado variables and its 
absence from the remaining indices (except N0, 
the control) was a result of a relative lack of 
tornadoes but an anomalously large number of 
wind reports observed on that day.  This was 
considered to be a desirable characteristic of the 
variables including few tornado variables; 
however, this comes at the cost of lower ranks 
for cases with a large number of strong tornadoes 

and relatively few nontornadic reports (e.g., the 
N25 index places 1 March 1997 as 81st).  The 
preferred group of indices is dependent on 
research goals.  If the task is to identify tornado 
outbreaks and discriminate from all other events, 
the indices with a larger number of tornado 
variables should be selected.  If the task is to 
identify significant severe weather outbreaks of 
any type, emphasizing the total number of 
reports and significant nontornadic reports, the 
selection of indices with fewer tornado variables 
is reasonable.  Nevertheless, tornado outbreaks 
are dominant for the highest-ranked cases 
without regard to which index is used, another 
result considered desirable in this study. 

 
The volatility of rankings increases for cases 

below the steep portion of the curves (Fig. 12).  
For the 20 April 1995, 17 April 1995, and 2 May 
1997 severe weather events (SD10; their Fig. 
10), the rankings are variable within the two 
groups of indices (e.g., the 17 April 1995 cluster 
had a range of 174 for rankings among indices 
N13–N16 and 171 for rankings among indices 
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N17–N19, N22, and N25).  However, the range 
widens substantially between the two groups of 
indices; e.g., the 17 April 1995 cluster had a high 
ranking of 526 (N17) and a low ranking of 930 
(N15)―a range of slightly greater than 400.  
Thus, the volatility of rankings between the two 
groups of indices is more substantial than within 
the two groups.  However, the cases falling 
within the strongly-sloped section of the curves 
(hereafter, the major severe weather outbreaks) 
tended to remain in that section no matter what 
index within the same group of indices (i.e., the 
all-tornado or two-tornado indices) was used.  As 
in SD10, this finding suggests that diagnosis or 
prognosis of the ranking (or index score) of an 
outbreak is challenging, whereas the diagnosis or 
prognosis of an outbreak’s severity based on 
general location within the curves (of the scores 
or rankings) may be more feasible. 
 

Interestingly, the lowest-ranked cases were 
reasonably consistent no matter what index was 
used (Figs. 11c,d).  In SD10, the effectiveness of 
the middle-50% parameter was determined to be 
the reason behind the consistency of the lowest-
ranked cases.  These cases are not considered in 
this study.  Instead, the rankings were relatively 
consistent because these events had relatively 
few reports, relatively limited coverage, and/or a 
relative lack of significant severe weather (e.g., 
Figs. 13c,d).  Also noticeable are the dates of 
these cases.  The majority of these cases occur 
after 1990, as a result of the relative lack of 
reporting of similar events prior to this time.  As 
noted earlier, nonmeteorological artifacts have 
not been removed completely. 
 
5.  Classifying outbreaks 
 

Because of the relative volatility of severe 
weather event rankings outside of the extremes, 
classification of all of these cases based on the 
characteristics of the severe reports is 
appropriate and potentially beneficial for 
operational forecasters.  As in SD10, a cluster 
analysis is performed on the four-dimensional 
decomposition of the indices.  All of the 
variables associated with tornadoes are included 
in the tornado component, all of the variables 
associated with wind are included in the wind 
component, and all of the variables associated 
with hail are included in the hail component.  
The fourth component includes the remaining 
variables (the total number of severe reports of 
all types, and the density ratio) and is referred to 
hereafter as the “miscellaneous” component. 

After analyzing several types of cluster 
analyses, two of the most appropriate methods 
were the k-means cluster analysis (Gong and 
Richman 1995) and the Ward’s hierarchical 
technique (Ward 1963).  Analysis of the 
decomposition using three-dimensional scatter 
plots, in which one of the four components is 
eliminated from the analysis, allows for simple 
interpretation of the results.  As in SD10, the N3 
and N22 indices will be presented, as the N3 
(N22) index is one that incorporates all (a subset) 
of the tornado variables.  Results of the cluster 
analysis within the two groups of indices were 
not substantially different (not shown). 

 
Analysis of silhouette plots of the k-means 

cluster analyses (Kaufman and Rousseeuw 1990) 
for 2–15 clusters indicates that a small number of 
even-numbered clusters was favored (i.e., 2, 4, 
and 6) for the N3 index (Fig. 14).  The 2-cluster 
analysis suggests that significant severe weather 
outbreaks (in total 872) were clustered separately 
from the remaining cases (5200).  Although 
major tornado outbreaks were a substantial 
portion of the cases in this cluster (Fig. 14a), 
significant severe weather of any type was 
included (Fig. 14b). The 3 April 1974 tornado 
outbreak is an outlier in Fig. 14a (reports in Fig. 
15a). The 21 April 1996 hail-dominant outbreak 
(Fig. 15b) and the 1 July 1994 and 30 May 1998 
wind-dominant outbreaks (Figs. 15c,d) are 
distinct outliers in the four-dimensional 
decomposition as well.  The 20 June 1974 
outbreak (refer to Fig. 13b) is a noticeable outlier 
when the miscellaneous component is analyzed 
(Fig. 14b), as this component includes the total 
number of reports of any type―which is 
anomalously large for this case.  All of these 
events are included in the significant severe 
weather outbreak category. 

 
The 4-cluster analysis indicates the 

existence of outbreaks that are dominated by one 
type of severe weather event (Fig. 14c).  The 
major tornado outbreaks (red; 57 cases), hail- 
dominant outbreaks (green; 887 cases), and 
wind-dominant outbreaks (blue; 340 cases) are 
similar to the cluster analysis findings in SD10 
(their Fig. 11).  The remaining cases are the 
relatively minor “mixed-mode” events (purple; 
4788 cases), in which little preference for any 
type of severe report is noted.  The four days 
specified in Figs. 14a and 15 are in the classes 
one would expect in the 4-cluster analysis. 
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Figure 14:  Clusters obtained using the four-dimensional decomposition of the N3 index and k-means 
cluster analysis.  Clusters identified by color, and excluded components of the analysis are labeled.  Cases 
identified include; 1) 3 April 1974, 2) 21 April 1996, 3) 1 July 1994, 4) 30 May 1998, and 5) 20 June 1974.  
In (c) and (d), hail-dominant events are shown in shades of green, wind-dominant events are shown in 
shades of blue, major tornado outbreaks are shown in red, and mixed-mode events are shown in purple. 
Click image to enlarge. 
 

The 6-cluster analysis separates the hail-
dominant and wind-dominant groups into two 
classes each (Fig. 14d).  The major hail (wind) 
events, in which a large number of hail (wind) 
reports and/or a large number of significant hail 
(wind) reports were observed, are separated from 
the relatively minor events.  In this analysis, 
there were 47 major tornado outbreaks, 262 
major hail-dominant clusters, 104 major wind-
dominant clusters, 1002 minor hail-dominant 
clusters, 806 minor wind-dominant clusters, and 
3851 minor mixed-mode events.  The major 
events (413 cases) primarily make up the steep 
portion of the characteristic curves in Fig. 10a. 

 
The k-means analysis of the N22 four-

dimensional decomposition is quite similar (not 
shown), with the same interpretations of the 
various clusters for the 2-cluster, 4-cluster, and 
6-cluster analyses.  Additionally, the number of 

significant severe weather outbreaks in the 
2-cluster analysis is 889, only 17 more cases 
than the N3 analysis.  Severe weather events 
commonly were placed in the same categories no 
matter which index was used. 

 
Ward’s hierarchical technique also was 

found to be relatively reasonable in categorizing 
groups of cases into particular types (Fig. 16).  
However, this technique appeared to group major 
tornado outbreaks and significant wind events 
(primarily derechos; see Johns and Hirt 1987) 
together (cf. Figs. 14c and 16c), which is 
undesirable.  Distinguishing tornadoes from 
derechos has been a focus of several past studies 
(e.g., Stensrud et al. 1997; Doswell and Evans 
2003), as the societal impacts of these cases 
typically are quite different. The 6-class analyses 
are somewhat similar for the k-means and 
Ward’s techniques (cf. Figs. 14d and 16d), 
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Figure 15:  As in Fig. 2a, for a) 3 April 1974, b) 21 April 1996, c) 1 July 1994, and d) 30 May 1998. Click 
image to enlarge. 
 
though the minor hail-dominant and wind-
dominant classes for each technique are quite 
different.  Several other linkage techniques (e.g., 
“average” and “single”) were susceptible to 
classifying outliers (e.g., 3 April 1974; 11 April 
1965; 5 February 2008) and were considered 
inappropriate for our purposes.  Because of these 
findings, the k-means cluster analysis was the 
preferred technique for classification of severe 
weather events based on the characteristics of the 
severe reports. 

 
Cluster analysis also was performed on the 

total one-dimensional scores, for guidance on 
possible categorization of severe weather events 
based on relative severity.  The average scores 
were taken of all of the indices, for each rank 
from 1 to 6072 (the same computation used to 
create Fig. 10b).  Ward’s hierarchical and k-
means cluster analyses then were conducted on 
these scores.  Once again, the other hierarchical 
techniques were susceptible to categorizing the 
outlier cases separately and generally were 
discounted.  Analyses of silhouette plots and 

dendrograms (not shown) suggested a low 
number of clusters were favored.  The resulting 
k-means and Ward’s cluster analyses (not 
shown) provided little guidance as to preferential 
grouping of the events based on relative severity.  
The k-means cluster analysis showed high inter-
cluster variability, and the Ward’s technique 
identified events  ranked higher and lower than 
the two regions where the all-tornado and two-
tornado ranking indices intersected.  In other 
words, the clusters of the Ward’s technique 
indicated the characteristics of the indices rather 
than of the outbreaks. 

 
Clear distinctions among various groups of 

severe weather events based on their relative 
severity were not found, suggesting that the 
severity of outbreaks is reminiscent of a 
spectrum rather than of separate bins.  However, 
categorical distinction of these events would be 
beneficial from a forecasting standpoint and 
appears to be more feasible than predicting the 
index values for these events (Section 4).  
Thresholds distinguishing various categories of 
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Figure 16:  As in Fig. 14, using the Ward’s hierarchical clustering technique. Click image to enlarge. 
 
severity could be determined by testing various 
index values using diagnostic or prognostic 
meteorological variables [such as the energy 
helicity index (EHI; Hart and Korotky 1991), the 
significant tornado parameter (STP; Thompson 
et al. 2003), or other individual or combined 
meteorological parameters] and identifying 
which thresholds seem to perform optimally 
based on predetermined accuracy and/or skill 
criteria.   

 
6.  Summary and conclusions 
 

This study is a follow-up to that of SD10, 
which presents an innovative technique to 
account for cases with large geographic scatter or 
multiple clusters of regionally separated severe 
weather reports, with the goal of developing a 
way to rank and classify severe weather events 
of any type.  The technique proposed uses KDE 
to identify regions associated with a particular 
cluster of severe reports, rather than the middle-
50% parameter introduced in D06.  By tuning 
the bandwidth and the threshold of the density 

estimation’s approximation of the two-
dimensional probability density function, severe 
reports within these regions were associated with 
the cluster.  Cases in which the number of 
reports within the cluster, or the ratio of severe 
reports to grid points (based on a specified map 
projection) within the cluster, was lower than the 
detrended mean value on a given year were 
excluded from consideration.  This process 
effectively excludes cases that feature large 
geographic scatter, but includes as separate 
events cases in which regionally-separated 
clusters exist on a given day, which was a 
limitation of the work by SD10. 

 
We have shown that the selection of map 

projection and grid spacing should not result in 
substantial differences in the regions associated 
with a particular cluster, as long as modifications 
to the bandwidth and probability density function 
threshold are taken into account.  This permits 
the use of relatively coarse grid spacing, though 
values well above 150 km are likely unwise to 
implement based on the magnitude of the 
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Figure 17:  As in Fig. 2a, for a) 9 November 1998, b) 10 November 1998, c) 1200 UTC 20 July 2000 to 
0000 UTC 21 July 2000, d) 0000-1200 UTC 21 July 2000, e) 11 November 1992, and f) 12 November 
1992. Click image to enlarge. 

 
selected bandwidths.  Also, converting the severe 
reports to a grid (as in Brooks et al. 1998) versus 
using the point values does not change the results 
of the work in a substantial way.   

 
After the severe weather clusters were 

identified, the procedure to rank and classify 
these events, in terms of severity and the 
characteristics of the severe reports respectively, 

was essentially identical to that of SD10.  The 
results were also similar, as major tornado 
outbreaks were the highest-ranked events.  Up to 
250 severe weather events appeared to be 
meteorologically distinct from the remaining 
cases, as evident in a very steep slope for the 
scores of the indices for these cases (versus a 
gradual slope for the remainder).  The rankings 
for the highest-ranked cases were relatively 
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similar regardless of the index, though important 
modifications were observed when a subset of 
the tornado variables was removed from the 
indices.  As expected (and desired), such 
removal permitted several severe weather events 
with few or no tornadoes to be included among 
the highest-ranked cases.   

 
As in SD10, no index can be justified as 

optimal.  Objectives of future research 
investigating severe weather outbreaks should 
dictate the selection of a specific index.  For 
example, if the goal of a research project is to 
study differences of tornado outbreaks from all 
other types, use of indices that include a large 
number of tornado variables appears to be 
appropriate.  However, if the goal is to 
distinguish major severe weather outbreaks from 
minor events regardless of category, the use of 
indices with fewer tornado variables may be 
appropriate. 

 
The rankings of the cases below the top 250 

are much more volatile, as observed in SD10.  
Subjective investigation of these events found 
that a large number of these cases are 
qualitatively similar in terms of the numbers and 
types of severe reports.  Thus, the prediction of a 
severe weather event’s rank is likely formidable, 
whereas predicting the categorical relative 
severity of an event is more feasible. 

 
Binary classification of events based on their 

relative severity was quite similar for the 
k-means and Ward’s hierarchical cluster 
analyses; however, differences between the 
techniques become substantial as the number of 
classes increases.  Thus, the separation of the 
highest-ranked cases (approximately 200–250) 
from the remaining cases (~5900) is a 
recommended starting point for future work.  
Determination of an optimal threshold, based on 
the ability of meteorological covariates (see 
Brown and Murphy 1996) to distinguish these 
events, also would be appropriate.  

 
Classification of severe weather events into 

various types based on the characteristics of the 
severe reports also resulted in categories similar 
to those found in SD10.  In general, events could 
be classified as major tornado, hail-dominant, 
wind-dominant, or minor (mixed-mode) 
outbreak cases.  Differences among the indices 
were very minor, whereas differences among 
various types of cluster analyses were more 
substantial.  However, the 6-class categorization 

of events between the k-means and Ward’s 
hierarchical cluster analyses were reasonably 
similar, in which the two additional classes 
roughly could be described as minor wind-
dominant and minor hail-dominant events. 

 
Although the KDE method appears to be an 

effective means of accounting for days with large 
geographic scatter and days with multiple 
clusters of severe reports, some limitations of the 
ranking technique remain.  For example, the 
selection of a 24-h period for which to analyze 
events independently leads to the possibility of 
misrepresenting events that occur at the end of 
one period and the beginning of another (e.g., 
Figs. 17a,b).  The current method would identify 
such a circumstance as two separate events and 
likely would underestimate the severity of the 
event.  Though examples are quite rare in the 
dataset, future work is planned to try to account 
for such events. 

 
Furthermore, multiple events can occur in 

the same region within a 24-hr period (e.g., Figs. 
17c,d).  The current method would consider this 
situation a single event, overestimating its 
severity.  These two limitations suggest that a 
time dimension should be added to the density 
estimation method; however, its inclusion 
presents challenges that require substantial 
investigation before implementation.  Objective 
identification, ranking, and classification of 
multi-day events associated with a single 
synoptic-scale system (e.g., Figs. 17e,f) also are 
prudent, and would provide a valuable resource 
for investigating these events.  Such work is 
beyond the scope of our current study, however. 

 
We reiterate that the technique presented in 

this study is not the only way in which severe 
weather events (outbreaks) could be identified, 
ranked, and classified.  Alternative techniques in 
the identification of outbreak events using severe 
weather reports exist (e.g., the contiguity-
enhanced hierarchical k-means clustering 
technique; Lakshmanan et al. 2003).  The 
choices made here were subjective, but were 
designed to be (1) reproducible, (2) simple to 
implement and interpret, (3) effective in reducing 
the impact of nonmeteorological artifacts in the 
dataset, and (4) capable of identifying 
geographically clustered events and eliminating 
the other cases.  Although we do not claim that 
our scheme is optimal, the results of our study 
indicate that these four criteria have been met, 
and the method can be modified according to the 
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objectives of future research investigating severe 
weather outbreaks or can be implemented in 
other meteorological research (such as flash 
floods, winter storms, hurricanes, etc.). 
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REVIEWER COMMENTS 
 

[Authors’ responses in blue italics.] 
 

REVIEWER A (Kimberly L. Elmore): 
 

Initial Review: 
 
Recommendation: Accept with minor revision. 
 
General Comment:  I have carefully reviewed the paper “Using kernel density estimation to identify, rank, 
and classify severe weather outbreak events.”  While not a ground-breaking work, it is a useful example of 
ways to apply kernel density estimation.  It should be accepted with minor revisions. 
 

Substantive Comments:  Most of the comments presented here are general as I have few specific 
comments to make.  Overall, the paper presents how to perform and use a kernel density estimate (KDE) of 
a discrete probability density function in two dimensions.  The authors have worked out KDE bandwidths 
and PDF thresholds that depict what they are after and have shown by example that, within limits, there is 
no difference between performing the KDE on a latitude/longitude grid and on a regular grid of roughly the 
same spacing as a 1° latitude/longitude grid. 

 
This application of multidimensional KDE is neither new nor particularly innovative, as it is mentioned in 
Silverman (1986) and also in Kaluzny, et al. (1998) and Venables and Ripley (2002).  What the authors 
characterize in their method is referred to as the “intensity” (λ) of spatial point patterns or processes (SPPs) 
in some spatial statistics texts and is considered a first-order property.  It is usually thought of as the 
number of points per unit area.  There are several ways to analyze SPP intensity, including two-
dimensional Gaussian KDE, as done in this work.  Two-dimensional smoothed histograms are also used as 
are other kernel weighting functions.  All tend to produce similar results. 

 
There are also ways to analyze second order processes within SPPs, which is roughly the expected number 
of points within a distance d from any point in the pattern.  Ripley’s K function (Kaluzny et al. 1993), or a 
scaled version of it, is usually used for this.  The second-order measure doesn’t define the structure, but 
does indicate if non-random structure is present. Since it is obvious by inspection that the SPP is not 
random and isotropic, such an analysis serves no purpose here. 

 
In fact, based on work by Barnes (1964), the method introduced here has actually been incorporated (to 
some degree and in various ways) for many decades.  The technique of KDE is definitely not new. 

 
One theme of this work is that using KDE sufficiently works for our intended purposes.  We do not claim 
that KDE is the only method to identify outbreak events via the location and clustering of the reports (and 
we state so explicitly in the text – see the last paragraph of Section 6, e.g.), but we strongly suspect that 
alternative methods will not provide substantially improved results.  Of course, part of the problem is that 
it is not entirely clear what “substantially improved results” would look like, based on the uncertainties 
inundating the severe weather reports archive (see Shafer and Doswell 2010).  However, as the cases 
considered agree with subjective notions regarding which events are severe weather outbreaks, and the 
regions identified by the KDE technique appear to correspond to the locations of the reports, we believe 
alternative analyses provide little if any benefit to our presentation. 

 
Overall, the text size needs to be increased on all figures. Since this is generally the case, I won’t call out 
each figure for that separately. 

 
This is an artifact of the plots being reduced to the size of the pages.  As EJSSM allows images to be 
enlarged to their initial size, this should not be a problem in the final version.  If the reviewer would like to 
see these figures in their initial size, we will be happy to provide these. 
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The authors go on to generate a cluster analysis derived from N-scores.  Clusters are intended to represent 
particular types of events, such as hail-dominant, wind-dominant, etc.  The cluster analysis appears to work 
well, but may be more complex than necessary.  This appears to be the case in [then-] Fig. 15, where the 
clustering is based on the mean of all available N-scores.  This seems to mimic a simple rank threshold.  
The clustering appears almost “too good” because there is no mixing at the margins of the clusters.  In 
effect, the clusters are “perfect” regardless of how many are chosen, a state rarely seen in cluster analysis. 

 
The reviewer makes a good point regarding the N-score vs. rank clustering.  We have no problem removing 
most of this portion of the manuscript, as the results do not appear to tell us much about the nature of the 
relative severity of the outbreaks (see below).   

 
This is not true, however, about the four-dimensional ranking index decomposition. 

 
I am also concerned about the nature of the function used in the cluster analysis (N-score vs. rank), 
especially for the very steep part of the N-score vs. rank plots.  There seems to be a very high inter-cluster 
variability in the clusters representing the highest ranks.  What’s more, the N-score values beyond the first 
250 highest ranked cases are essentially constant.  How is it that a meaningful distinction can be drawn 
between event types in the orange and red segments in [then-] Fig. 15d? 

 
These are excellent points, and we did not clarify these enough in our original draft.  The basic result is 
that there is not much guidance provided by the cluster analysis on grouping outbreaks by their relative 
severity.  What the Ward’s technique was showing was essentially where the scores (as a function of rank)  
for the two types of ranking indices (all-tornado vs. two-tornado indices) intersected―meaningful only 
because of the characteristics of the indices themselves and not the outbreaks.  The k-means technique was 
showing the high inter-cluster variability the reviewer refers to.  As neither technique really provides any 
guidance as to obvious distinctions between major severe weather outbreaks and less significant events 
(and subgroups within), we are inclined to remove much of this portion of the manuscript, especially given 
the reviewer’s concerns.  We have only included the points discussed in our response, and the need for 
some type of distinction from an operational standpoint. 
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[Minor comments omitted...] 
 
Second review: 
 
Recommendation:  Accept. 
 
General Comments:  The corrections are entirely satisfactory and I have no additional comments. 
 
 
REVIEWER B (Valliappa Lakshmanan): 
 
Initial Review: 
 
Reviewer recommendation:  Revisions required. 
 
Substantive Comments:  The authors introduce a technique to cluster severe weather reports in order to 
rank outbreak events by cluster instead of (as in their earlier work) by a 24-hour period. To cluster the 
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reports, they smooth the reports using a 2D Gaussian and then find contiguous regions within the resulting 
gridded field. The paper is clear, technically correct and concise. Therefore, I have only minor comments: 
 
[Editor’s Note:  The following review points (and the authors’ responses) are rather substantive and are 
included here.] 
 
Equation 3 is probably better written in terms of x and y since this is a 2D spatial Gaussian. I think that the 
vector notation just serves to obscure the basic point. 

 
Good suggestion.  We have included this as well as the vector term. 
 
I disagree with the footnote on page 5 and the corresponding text on page 8.  You should not have to 
change *both* the variance of the Gaussian and the probability threshold.  You can arbitrarily set the 
threshold and find a sigma that achieves the separation that you need. There are only two degrees of 
freedom here (one if you set sigma_x = sigma_y). 

 
We think the reviewer’s point is valid but more an issue of semantics.  In our approach to this problem, we 
did not arbitrarily select any values (PDF thresholds) beforehand.   We did know, however, that only a 
range of Gaussian thresholds would work for our purposes, because of the well-known bias-vs.-variance 
tradeoff associated with kernel density estimation.  We needed to test multiple variances in order to 
determine if smoothing was too strong or too weak.  The best PDF threshold then is determined once we 
select the variance of the Gaussian that features the characteristics that agree most with our subjective 
notions (i.e., smooth regions that do not combine two geographically separate clusters―Figs. 6c,d provide 
examples of “overfitting” and too much smoothing, respectively).   

 
We note in the text that the same PDF threshold would not work with any value of Gaussian variance 
because the PDF is a function of the variance.  Our example is a comparison of Figs. 6c,d.  Note that in 
Fig. 6c, we have selected a bandwidth of 1.5.  The PDF threshold that agrees most with our subjective 
criteria for usage is the outermost contour (0.001) ―as the area within it encompasses almost all of the 
reports associated with the event without combining geographically separate clusters.  However, using a 
bandwidth of 2, the PDF threshold that agrees with our subjective criteria becomes ~0.005, because lower 
thresholds had a tendency to join regionally separate clusters of events.  Now, in the latter case, we 
discounted the bandwidth of 2 and the PDF threshold of 0.005 because these regions typically did not 
encompass all of the reports associated with the outbreak cluster. 

 
This latter point is critical.  If we select a bandwidth that contains too much smoothing (as in Fig. 6d), 
there is no PDF threshold we could select that works sufficiently for our purposes.  Indeed, no PDF 
threshold between 0.001 and 0.005 encompasses the reports in the manner that certain PDF thresholds at 
lower Gaussian variances do.  Similarly, selecting a bandwidth that is too small results in too little 
smoothing, and no selected PDF threshold works adequately.  Because there is a finite range of Gaussian 
variances that work for our purposes, that means there is also a finite range of PDF thresholds (based on 
the function relating the PDF threshold and bandwidth).  Thus, we cannot (or at least should not) 
arbitrarily set a PDF threshold beforehand.  This is why we state that the PDF threshold has to be 
modified based on the selection of bandwidth.  Because one is a function of the other, modifying one means 
modifying the other.   

 
Finally, we note that f(x) is not a unitless value.  If we use the distance method described in the text, the 
units of f(x) depend on the dimensionality of the KDE by (1/h)d, where h is the bandwidth and d is the 
number of dimensions.  In two dimensions, d = 2 and h is measured in distance (km) such that f(x) has units 
of (km)-2.  Based on the choice of grid point method or distance method, the units of f(x) will be different.  
This affects the values of PDF threshold that are selected when using alternative map projections. 
 
I've done work before with contiguity-enhanced hierarchical k-means clustering, for the purpose of 
identifying storms (Lakshmanan et al. 2003).  Wouldn't a clustering approach like that also work here?  
You could explicitly specify the desired intercluster distance in kilometers and let the clustering technique 
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find the clusters based on the intuitive parameter.  [That] would save you a lot of the work in finding 
sigmas and PDF threshold based on an implicit assumption of intercluster distance. 

 
We see no reason why this would not work, and it may indeed be a more efficient means of doing so.  We 
are by no means suggesting that the method shown in our paper is the only method or even the best method 
of identifying, ranking, and classifying outbreak events (and we state this explicitly in the text).  This is 
perhaps an alternative approach that could be investigated in future work.  In fact, we strongly encourage 
attempting alternative methods.  We do believe, however, that the results shown in our paper meet the 
goals we set out to accomplish.   

 
We have added some text in the final section regarding this proposed alternative and have included the 
reference you have provided. 

 
Lakshmanan, V., R. Rabin, and V. DeBrunner, 2003:  Multiscale storm identification and forecast.  J. Atm. 

Res., 67, pp. 367-380. 
 
Second review: 
 
Recommendation:  Accept. 
 
General Comments:  The paper's fine; I'm satisfied with the authors' edits. 
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