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ABSTRACT

Several aspects of the problem of estimating derivatives from an irregular, discrete sample of vector observations
are considered. It is shown that one must properly account for transformations from one vector representation
to another, if one is to preserve the original properties of a vector point function during such a transformation
(e.g., from u and v wind components to speed and direction). A simple technique for calculating the linear .
kinematic properties of a vector point function (translation, curl, divergence, and deformation) is derived for
any noncolinear triad of points. This technique is equivalent to a calculation done using line integrals, but is
much more efficient.

It is shown that estimating derivatives by mapping the vector components onto a grid and taking finite
differences is not equivalent to estimating the derivatives and mapping those estimates onto a grid, whenever
the original observations are taken on a discrete, irregular network. This problem is particularly important
whenever the data network is sparse relative to the wavelength of the phenomena. It is shown that conventional
mapping/differencing schemes fail to use all the information in the data, as well. Some suggestions for minimizing

VoL. 45, No. 2

- the errors in derivative estimation for general (nonlinear) vector point functions are discussed.

_ 1. Introduction

Information about the derivatives of a function can
be as important, if not more important, as that con-
cerning the function itself. That is, the relative distri-
bution may be of more interest than the particular val-
ues. Derivatives of the wind field, a vector point
function, have important kinematic and dynamic sig-
nificance; such derivatives permeate the diagnostic and
prognostic equations of meteorology, so that obtaining
good wind field derivative estimates becomes a matter
of substantial concern.

However, it is not always easy to fulfill this need
Part of the problem in obtaining good wind represen-
tations for use in meteorological diagnosis/prognosis
is the sparseness of meteorological data. This problem
is compounded by the irregularity of the sample points’
spatial distribution. Given a limited number of irreg-
ularly distributed wind observations, the goal is to-ex-
tract the maximum amount of useful information from
that sample.

The traditional approach to determining wind field
derivatives begins with an “objective analysis™ scheme
(e.g., see Cressman, 1959), applied to the irregularly-
distributed point values of the # and v wind compo-
nents as if they were independent scalars. The objective
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analysis maps the wind components from the original
sample points onto a regular grid. Once on the grid,
the wind component derivatives are obtained via finite
differencing. It is also relevant that analysis schemes
which do not require the mapped fields to replicate
exactly the observations at the sample points provide
a simultaneous smoothing of the data (Stephens and
Polan, 1971). Since meteorological data always contain
some unknown amount of noise, this is a desirable
property. That is, noise in the data tends to increase
the amplitudes of short-wavelength spectral compo-
nents, which are then magnified further by finite dif-
ference computations (Barnes, 1986).

In a previous paper (Schaefer and Doswell, 1979—
hereafter referred to as SD79), two-dimensional wind
field diagnosis was approached in a manner quite dif-
ferent from this traditional scheme. By calculating two-
dimensional vorticity ({) and divergence (D) directly
from the irregularly-distributed sample points via line
integrals, SD79 demonstrated considerable improve-
ment in the estimated derivative properties of the wind .
field by applying the technique to analytically specified
vector functions.

This paper explores the origins of the improvements
shown in SD79. We will show that derivative estima-
tion for general vector point functions may involve
treating them differently than pure scalar fields when
the density of the sample data is not high enough to
allow one to assume quasi-continuous data. However,
it will be shown that one must account for the vector
nature of the function only when the sampling density
falls below a level to be defined. A computationally



15 JANUARY 1988

simple technique for estimating wind field derivatives
is introduced which is equivalent to the line integral
method, but gives additional information as well. Fur-
ther, it will be demonstrated that the traditional ap-
proach fails to utilize all the information contained in
the wind observations, whereas the line integral concept
does, thus accounting for improved derivative esti-
mates. Distortions introduced into the derivative es-
timates by the standard approach can be avoided or
reduced by using the concepts developed here.

Although we have noted that wind field derivative
estimates are an important part of initialization for
numerical weather prediction models, it is not our in-
tent to pursue the implications of this study with respect
to prognostic models. Our primary concern is for di-
agnostic evaluation of wind field derivatives from ob-
servations, rather than the use of those diagnoses in
the complex context of modern forecast models. The
issues we explore, even within this restricted domain,
are subtle and complex enough.

The main point of this paper is to develop a theo-
retical basis for improved wind field interpolation
techniques. While much of this theory can be applied
to scalar functions, we are concentrating on the unique
nature of vector fields, so we shall not explore the ram-
ifications of this theory with respect to scalar analysis.
Application and empirical validation of the concepts
developed here will be pursued in a subsequent pub-
lication.

2. The properties of vector point functions

A vector point function specifies a vector at every
point within some domain. Given discrete sampling,
nothing is known about the vector function between
sample points, and yet it is this change in the vector
function from one point in the domain to another that
determines the derivatives of the function. With tra-
ditional approaches, the diagnosed wind component
fields can match the observations at the sample points
rather closely and yet not describe the derivative fields
at all well, as we shall attempt to show.

An issue raised in SD79 concerns the question of
what vector representation is appropriate for interpo-
lating vectors linearly. For the hypothetical example
given in SD79 involving only two observations of the
wind along a line (see their Fig. 1), a rather troubling
paradox arises. By linearly interpolating different rep-
resentations of the wind field (¥ and v wind components
versus wind speed, S, and direction,’ #) to the midpoint

3

! Note that in going from one representation to the other, a trans-
formation is involved, but it is not a transformation of coordinates.
Rather, it is a transformation of vector representations. Yet a third
type of transformation may be, involved, as when the underlying
space is transformed; e.g., the case of going from points on the surface
of a sphere to a flat plane. This latter transformation is not considered
in this paper.
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of the line connecting the two samples, SD79 pointed
out that different answers for the interpolated wind
speed at the midpoint are obtained. It was suggested
that this difference is attributable to “the somewhat
arbitrary nature of the vector norm” but the ambiguity
was never resolved.

For the example given in SD79, a complex picture
is revealed by considering other points along the con-
necting line in addition to the midpoint. In order to
illustrate the difference in the two representations, we
employ the (nonlinear) transformation between them:

u' = Scosd, S =(u?+0vH"7

v'= Ssind, 60’ = tan"'(v/u).

Thus, as shown in Fig. 1, if # and v are characterized
by a linear variation between the end points, the re-
sulting S’ and 6’ variations are nonlinear. Conversely,
if S and @ vary linearly, the implied u' and v’ distri-
butions between the endpoints are nonlinear. A reso-
lution of this issue can be found by considering the
nature of a vector point function.

a. Linear vector functions

This section assumes that we are in two-dimensional
orthogonal cartesian (OC) space, and the vector func-
tion (V) is linear. By definition then, following Saucier
(1955, p. 318) and Doswell (1984), the components of
V can be expressed by the linear terms in a Taylor’s
series expansion:

u(x, y) = u(xo, yo) + zx] (x = xo0) + (')y] (y — yo),
L
v(x, y) = v(xo, o) + 3 ](x Xo) + 8y] (y — »o),

1
where (xg, Jo) is some point at which the values of u
and v and their derivatives are known,? while (x, ) is
the point where the values of # and v are to be. deter-
mined. If we define the following quantities:

2a = 3—1 - Z—y = def(V), |

S T .
2’ = ? a—“ = def,(V), [ ?
2c=§£-—%’-;arot(V) =

2 As discussed in SD79, the line integral definition of the kinematic
properties involves a limit as the area of the triangle goes to zero.
Thus, the values computed properly apply at the centroid. For the
case of a linear field, these values are constant, so they do not change
as the area of the triangle shrinks.
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FIG. 1. Tllustration of how a linear variation in  and v components implies a nonlinear variation of the
speed and direction (a) and, conversely, how a linear variation of speed and direction forces a nonlinear
variation of the ¥ and v components (b). See text for the meaning of «’, v/, S’ and #'. Horizontal distance
units are arbitrary, referring to arc length along a line connecting two wind observations, as in Schaefer and

Doswell (1979).
then it is straightforward to show from (1) and (2) that
U= uy + aéx + a’dy + béx.— cdy,

a linear wind field satisfies
_ , 3)
v = o — ady + a'dx + bdy + cox,

where u,, Vo, @, @', b and ¢ are constants. In (3), u
= u(Xo, ¥o), Yo = V(xo, J0), 0X = (X — Xo), and &y = (y
— ¥o)- As noted in Doswell (1984), the applicability of
the linearity assumption depends on the length scale
associated with the spatial variation of the wind com-
ponents. This is discussed at some length below. For
now, consider how to employ (3) in describing the lin-
ear behavior of a vector field from the wind observa-
tions. .

There are six unknowns in (3): uo, vo, a, @', b and
c¢. These quantities are referred to in this paper as the
kinematic properties of the wind field. Specification of
values for these provides a complete description of a
linear wind field. It is reasonable to ask why one would
not prefer to specify such a vector function by providing
g, Vo, and the four derivatives du/dx, du/dy, dv/dx and
dv/dy. The answer is that vorticity ({), divergence (D),
and the resultant deformation (described by the square
root of the sum of squares of the two deformations and
the resultant axis of dilatation) are properties of the
vector field which should remain invariant during
transformations of the sort considered in this paper.
Thus, while the # and v components are not invariant,
- certain combinations of their OC coordinate derivatives
are; this suggests that treating # and v as independent
scalars can cause problems.

Since there are six quantities needed to specify a
linear vector field completély, this means that three

wind observations, which provide six pieces of infor-
mation about the wind field, are sufficient to solve for
the six kinematic quantities. If we define the row vec-
tors: D = (up, ¥o, 4, @', b, ¢) and U = (u,, vy, Uz, Vs,
us, v3), the latter of which contains the wind component
observations at the triad of points (x;, y,), (x2, }»), and
(x3, 1), then the system of equations one derives from
(3) is simply DX = U, where X is the six by six matrix:

[ 1 0 1 0 1 0
0 1 0 1" 0 1
ox; =0y oxp —O0y2  Ox3 —Oy3j_ X
oy X 6y, Oxy  dys X3 ’
ox; oy bxp 8y, Ox3  Oys

—on oxy —dy,  dxp —bys Oxs

Note that éx; and 8y; (i = 1, 2, 3) are distances from
the centroid of the three observation points. This sys-
tem can be solved easily for D = UX™!, Provided the
three samples are taken at noncolinear points, X! ex-
ists and there should be no conditioning problems un-
less the three sample points are very close to colinearity
(in which case det[X] approaches zero).

We have tested the ability of this scheme to deter-
mine the kinematic properties of linear flow fields (see
Fig. 2 for some examples). Values were specified for
the components of the vector D and used in (3) to form
a regular grid of wind vectors, as in Fig. 2. Then various

. combinations of any three noncolinear points were

chosen to specify the components of U and a simple
Gauss-Jordan algorithm was used to find X™!. The re-
sulting calculated components of D were the same, to
five decimal places, as the input values, using single
precision arithmetic on an IBM PC-XT. It is note-
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FIG. 2. Four examples of linear vector point functions. The six kinematic quantities are specified
on each example, in arbitrary units.

worthy that this calculation gives values of vorticity
and divergence that are equivalent to those found by
SD79 in evaluating line integrals around triangles
formed by three noncolinear data points. This can be
shown by evaluating X' analytically. Further, this
method also provides u, and vy, the local translation
components (see Saucier, 1955, p. 318). Zamora et al.
(1987) provide an example of how this technique can
be used to estimate the first derivatives of the wind
field, for a situation in which X is fixed—once X! is
determined in such a case, it need not be recalculated,
making this approach quite efficient for derivative es-
timation.

Having established what we mean by a linear vector
point function, let us return to the issue raised in SD79
about choosing a vector representation. When only two
observations of the wind are given, this is insufficient
to specify completely even a linear vector field. How-
ever, if the field is assumed to be linear, then along any
arbitrary straight line the tips of the vectors whose tails
are on that line also form a straight line. This can be
seen by examining Fig. 2. In SD79, no explicit as-
sumption about the character of the vector field was
made. However, it was assumed that the interpolation
was linear. Such an interpolation apportions any dif-
ferences between observations linearly along the line.
If this interpolation procedure is done for speed and

direction, the tips of the interpolated vectors do not lie
along a straight line, implying that the wind field is
nonlinear. If the differences in ¥ and v components
are apportioned linearly, the resulting interpolated
wind vector tips do, indeed, lie on a straight line. The
choice between representations, when the wind field is
assumed to be linear, is clearly that of ¥ and v com-
ponents. The resolution of the issue is achieved when
the character of the vector field is specified. Of course,
no true wind field can be completely linear, since the
velocity components of linear fields increase in mag-
nitude without limit as distances tend to infinity. Thus,
we turn now to nonlinear vector point functions.

b. Nonlinear vector functions

When any of the kinematic quantities vary in space,
the field is nonlinear. The Mean Value Theorem of
the calculus implies that calculations of first derivatives
[the relation between the kinematic quantities and the
first derivatives is shown in (4) below] apply only lo-
cally, within a neighborhood of the point to which the
quantities are assigned. The nonlinear nature of the
flow must be accounted for by the point-to-point vari-
ation in kinematic properties. However, if the scale of
the nonlinearity is on the order of the distance between
sample points, then first derivative estimates can be
seriously in error.
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What is meant by “the scale of the nonlinearity”? If
we suppose that the function is represented by a si-
nusoidal variation [e.g., #(x) = A4 sin(2=x/L), where L

. is a wavelength], then near the inflection points the
function is well-approximated by a straight line over a
length which is some fraction of L. However, near the
extrema, curvature is so large that representation of
that part of the function by a straight line is accurate
only over a much smaller fraction of L than near the
inflection points. One way to think of the scale of the
nonlinearity is in terms of this length over which the
variation of the function is well-approximated by a
straight line. (In two dimensions, the analog to this is
a region over which the gradient has nearly constant
magnitude and direction.) ’

Another way to think of scaling the nonlinearity is
to consider the Fourier spectrum of the function. When
the spectrum has large amplitude only at wavelengths
much larger than the sampling interval (say, A), the
sample is capable of representing the field well. This
means that for functions composed primarily of long
wavelengths (relative to A), we can assume that non-
linearity in the flow field is well approximated as the
point-to-point variation of the linear terms. Should
there be significant amplitude present at scales on the
order of A, the point-to-point variation of the first de-
rivatives does not approximate the nonlinearity prop-
erly.

Three (noncolinear) observations of the vector func-
tion completely specify the linear variation but leave
the nonlinear variations undetermined. If there are
more than three observations, the local linear properties
can be estimated for every suitable’triad. Each such
triad will, in general, have different values for the first
derivative estimates, allowing estimation of the non-

Jlinear terms (at least to second order) from spatial
changes in the first derivatives. In the case of linear
vector point functions, a, a’, b and ¢ were constants
over the whole domain. For nonlinear functions, the
kinematic quantities can be considered constant only
over the triad of observations. That is, the obvious as-
sumption to make is that the field is locally linear. By
the Mean Value Theorem, there is some (unknown)

_ point within that triad where the true derivative takes
on that average value, and that point is considered to
be the centroid (see footnote 2). Thus, although a, 4/,
b and c are locally constant in a nonlinear situation,

~ one has to account for spatial variation in those quan-
tities—i.e., they have derivatives. Solving (3) for the

OC coordinate derivatives, one has

du i)

—_— + = '

F a b,a a —ec, "
oo _, v _

5)—‘—a +c,a =p—a,

so differentiating (4) gives the second derivatives of the
field -
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x? ax ax’ ax? ax ox’
Pu_od 9 v _0db_da
W’ 3y ady’ * sy 9y’
Pu b da_da
dxdy dy dy dx ax’
Fo _oa  dc_db _da
xdy dy dy dx dx

Suppose the flow is nondivergent (b = 0) and the
vorticity [2¢, where ¢ = c(x, y)] varies linearly. Then
the spatial variation of ¢ is specified by constant values
of dc/dx and dc/dy. Using the relationships above, these
derivatives are simply

&)

In this situation, the fields a and a’ (which together
comprise the resultant deformation, an invariant) can-
not both be constants, unless the vorticity vanishes al-
together (a trivial case). In particular, both deforma-
tions cannot be zero. Hence, one cannot have a non-
divergent flow with spatially varying vorticity, without
also having deformation (which also must vary spa-
tially), as stated without proof in Doswell (1984). A
similar argument could be made for a vector field which
is irrotational and has b = b(x, y), an example of which
might be the gradient of a scalar. A truly general vector
point function has rotation (i.e., its curl), divergence,
and deformation as general functions of space. (Note
that giving the rotational and divergent parts of a flow
is not equivalent to providing the irrotational and non-
divergent parts, since deformation is both irrotational
and nondivergent.)

We have already argued that in an OC space, treating
u and v as independent scalars is capable of handling
the linear variation of a vector field. For a nonlinear
field the fact that we have written the series expansions
for u and v independently suggests that they can always
be treated independently. However, it turns out that
for some situations, doing so creates some special
problems. In order to explore these issues, we must
turn our attention to the traditional mapping/differ-
encing method.

3. Properties of the traditional approach

The starting point for derivative estimation via the
traditional method from meteorological data is trans-
forming data from sample points to a regular grid. Al-
though this is done for the scalar components of the
wind field, the mapping method can be used for any
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scalar. This process often takes the form of a weighted
average®

N
U(Xg, Yg) = 2 Wi, YIW(X: = Xg, ¥i = o), (6)
i=1
where (x;, y,) is the point to which the data are to be
mapped (usually but not necessarily a grid point, as
shown by Caracena, 1987), while #i(x;, y;) represents
the sample data at points i = 1, 2, - - -, N. Relationship
(6) represents a type of discrete convolution of the
sample with the weight function, w. By considering
some idealized examples of the convolution process,
we can see how the result of (6) influences the esti-
mation of derivatives. :

a. Continuous, unbounded data

Consider a situation where the data are continuous
and unbounded. The analog to (6) in such a situation
is

ux, y) = J:o J:O ax', y'")

Xwx'—x,y' — y)dx'dy’ = iixw,

where the * denotes a continuous convolution. Taking
the first partial derivative of u with respect to x gives

au e oo e ] ] aw ] ] ! ¥
5;=f_ f_ u(x,y)-—ax(x—x,y—y)dxdy-
)

Note that a second term involving 3ii/dx does not ap-
pear because # is not formally a function of x. By mak-
ing a change of variable £ = x’ — X, it can be shown
that (dw/dx)dx’ = (—0w/dx')dx’. Then integrating (7)
by parts gives

du J‘*‘” . J‘+°° ol ol
—= Yo+ —dx'ldy = — sw.
. [[uw] Y dx]dy oY

®

The boundary terms vanish provided w - 0 as x’ —>
+00, which is the case for most forms of the weight
function. (Note that this argument is equally valid for
nonhomogenous and/or anisotropic forms of the
weight function, most of which also tend to zero with
increasing distance.) If one goes through a similar ar-
gument for v(x, y) and dv/dy, then it can be seen that

3 The process can take other forms, such as fitting polynomials,
but virtually all such other forms can be re-cast in terms of weighted
averages. This can be seen by noting that if one has a well-defined
spectral response associated with the process, one can do an inverse
Fourier transform of the spectral response to determine the effective
weight function. Although we have confined our attention to ho-
mogeneous, isotropic forms of the weight function, w, more general
forms of w can be uséd in our derivations, leading to complexities
which are, for our purposes, of secondary importance.
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the divergence (D) satisfies D = D*w, and so forth for
all the linear derivative properties of the field. This
means that in the case of continuous, unbounded data,
the dernivative of the convolution of the data with the
weight function is the same as the convolution of the
weight function with the derivative. If the weight func-
tion has smoothing properties, as it usually does, then
differentiating the smoothed data gives the same result
as smoothing the derivatives. Therefore, for continu-
ous, unbounded data, the invariant properties of the
vector field are preserved if one treats » and v as in-
dependent scalars.

b. Continuous, bounded data

For continuous, but bounded data domains, one can
make the same statement about the convolution as for
unbounded data, but it is valid only for regions within
the interior of the data domain. The critical part of the
derivation of (8) is the vanishing of the boundary terms.
For bounded data, the boundary terms can be neglected
when far from the data boundaries. By “far from the
boundaries”, we mean that the weight function be-
comes negligible before the boundary is encountered.
Away from boundaries, then, the derivative of the con-
volution of the data with the weight function is very
nearly equal to the convolution of the weight function
with the derivative. Near the boundaries, however, one
obtains a different answer if one first smooths the u
and v components and then calculates derivatives, than
if the derivatives are estimated and then smoothed.
This means that the invariant properties of the vector
field are altered by the traditional approach, at least
near the boundaries, even when the data are contin-
uous.

¢. Discrete data

One should consult Caracena (1987) for the details
of what is involved in going from continuous to discrete
mathematics in derivative estimation. It turns out that
we can extend the results just obtained to the discrete
convolution, under certain circumstances. That is, fi-
nite differencing of the data convolved with the weight
function can be equivalent (or nearly so) to the con-
volution of the derivative with the weight function, but
only when certain assumptions are met. In order to
understand those circumstances which allow the ex-
tension to discrete data, we have to examine finite dif-
ferentiation.

As a standard example,* define the finite difference
operators on a general function, f(x;,, y,), defined on
a grid (hence, the g-subscript) to be

4 Although a second order centered difference operator is hardly
the best differencing scheme available, it is used commonly in wind
field diagnosis. Further, it serves to illustrate derivative estimation
problems.
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Vx (xgi s .ng)

= QAX) 7 [f (X + AX, Vo)) — [xgi — Ax, V)l (9)
Vyf (xgyi s ygj) .
= 2AY) 'S Cxgi Yoy + BY) — S (Xgir Ye; — AV, (10)

where Ax and Ay are the grid intervals in the x- and
y-directions, respectively. First consider a situation
wherein the data and grid points coincide and the do-
main is infinite. The discrete convolution of, say, #(x;,
;) with the weight function is

+00 +oo
u(xgi, ygj) = 2 Z u(xn yj)w(xl xgi; yi— ng)-
i=~00 j=—o0
(11)

When the V-operator in (9) is apphed to (11) one ob-
tains

Vil Xgi, Vo) = 20 20 ti0x;, )V w(x;

i

= Xgis Vi — ygj)9

(12)

where, as in the continuous example, the data 7(x;, ;)
are not formally a function of (x,;, ), so a second
term in (12) does not appear. Expanding V,w in (12)
using operator (9), we can take advantage of the sym-
metry in this situation in a manner analogous to that
done by Sasaki (1969). Consider Figure 3, where the
distances from grid points to data points along the x-
direction are diagrammed. In Fig. 3 the data points
and grid points have been displaced from each other
to make the symmetry clear, but keep in mind that
each grid point is also a data point, and vice-versa.
Then the weight function gradient, V,w, can be written
as (dropping the [2Ax]™! factor)

gi-1 Xgi Xgie1

X1 X; X+

FIG. 3. Illustration of how x-distances from grid points (the three
x-points with g-subscripts) to data points (the three x-points without
g-subscripts) can be calculated equivalently from different point pairs.
Although the line containing the grid points is displaced from the
line with the data points, this is for illustration purposes only. Sim-
ilarly, distances between the data and grid points are shown as slanting,
. but all are actually along the same x-direction line—this’is done only
to avoid overlapping lines.
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Wixi = (i + AX), 35— Yl — Wik — (g — Ax),
Vi = Veil = Wi — Xgir1, ¥ — Vgj)
= W(Xi — Xgi~1, Vj — Vei)s
which is identical to
W(Xio1 = Xgis ¥j — Vej) — W(Xir1 — Xgis ¥i — Va)
= —[W(Xi+1 — Xgis ¥i = Vai)
= WXi=1 — Xgi, ¥~ Vel

because w depends only on distances between points
and the symmetry permits the permutation of indices.
For simplicity, we shall drop the y-dependence tem- .
porarily in what follows and consider some represen-
tative terms in the series (12)

AW — Xgivr) — WX — Xgi1)]

= Xgiv2) ~ — X+ -
which become, by what we have just seen,

— Xgi) — — Xgi)]

= U )W Xis2 — Xgier) — WX — Xgier)] —

It can be seen that by appropriately rearranging parts
of consecutive terms, recalling that the series is infinite,
(12) becomes

Vet = —2, [2( WV, i) = E > WVl = Vxﬁfw.
Jj i 13)

In effect, we have accomplished a discrete integration
by parts. Now (13) is a discrete analog to the continuous
result, and it can be applied to the interior (far from
the boundaries) of bounded, discrete domains as well,
again provided the weight function becomes small as
distances become large. Further reason for being far
from the boundaries in this discrete case is that near
the boundaries one does not have the appropriate terms
in the series available for the rearrangement necessary
in going from (12) to (13).

Therefore, as in the continuous case, we find that
the invariant properties of the vector field are preserved.
However, one serious limitation was introduced in or-
der to make the rearrangement of terms in going from
(12) to (13)—the data are assumed to be at the points
of the computational grid. This situation is quite lim-
ited in terms of practical application; one hardly ever
finds meteorological data on a uniform mesh of points.

A second case arises when the data are regular, but
not colocated with grid points. This situation is rather
uninteresting, because if this were the case, one cer-
tainly would wish to move the grid so as to bring the
grid and the data into alignment. Hence, we have not
performed an analysis of such a case.

The third, and most realistic, possibility is for irreg-
ularly-distributed, discrete data. If (9) is applied to (6),
the form of the convolution applicable to irregularly-

+ 406 ) [ Wi W(Xip1

= )W W(Xi-
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distributed data, the result analogous to (13) is (where
the summation is now over the N data points)

N
Z [ﬁ(xn’ yn)vxw(xn -

n=1

vxu(xgia ygj) = Xeis Vn — ygj)]'

(14)

The distinction between forms (14) and (13) is far more
profound than mere notation. As with the previous
forms, a second term in (14) does not appear, since the
# are not defined on the grid, to which the operators
like (9) and (10) are restricted. Derivatives of the data
do not appear explicitly on the right-hand side of (14),
while it appears that the derivative estimates depend
as much on the spatial derivatives of the weight func-
tion as on the data values themselves! Furthermore,
(14) cannot be manipulated as done to derive (13),
since the irregularity of the data distribution prevents
the rearranging of terms. In a regular grid of data, every
point in the grid is identical to every other point in
terms of the surrounding data distribution (at least far
from the boundaries). This is not the case for irregular
data meshes, thus making the manipulation used to
show (13) impossible.

From a practical viewpoint, this is more than an
interesting mathematical quirk of the way in which
these problems are formulated. What is being said by
(14) is that taking the finite difference form of the de-
rivative after having used the convolution with the
weight function to get the data to a grid is not the same
as convolving the weight function with the derivative
estimates. The conclusion one should draw is that de-
rivative estimation via the standard technique does not
preserve the invariant properties of a vector point func-
tion. Thus, it is preferable to estimate the derivatives
first, since the invariants of the original vector field
should be preserved in the transformation to a grid.
This is the motivation for using the line integral tech-
nique, as in SD79; viz, it provides a way to obtain
derivative estimates prior to transforming to a grid.
Only in special situations—either continuous data
(unbounded or in the interior of bounded domains),
or discrete data on a regular grid (again, unbounded
or interior to bounded domains)-—can the traditional
approach give an uncontaminated estimate of the de-
rivatives.

If (14) characterizes the response of the standard
techniques, two questions come to mind. First, it is
clear that there have been many applications of the
traditional approach (particularly in synoptlc diagnosis)
which do not seem to be seriously in error—are these
applications essentially correct as they stand? Second,
if this problem with derivative estimation via finite dif-
ferencing of mapped (and smoothed) data is only se-
rious under certain circumstances, what are those cir-
cumstances and how rarely (or often) do they arise?
To help answer these questions, we must turn to sam-
pling theory.
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4. Sampling as it relates to derivative estimation

If we consider continuous data as a limiting case of
discrete data, by oversampling the function heavily
enough (say, 100 samples per wavelength), the errors
made in treating the data as if they were continuous
may become negligible. The problem is to know exactly
(or even approximately) how much sampling is enough.
In many fields other than meteorology, it is possible
to obtain adequate sampling more or less at will. For
example, in communication theory problems, one of-
ten can increase the temporal sampling rate to the de-
sired level in order to meet perceived needs. In contrast,
for much of operational meteorology, the sample points
are fixed (and irregularly-distributed), so the question
becomes one of deciding at what point information
extraction becomes noise extraction. From the per-
spective of this paper, we need to know at what scales
the data can usefully be approximated as “continuous”,
thus ensuring that the problem represented by (14) is
not significant.

One can derive some rough guidelines by considering
uniform, one-dimensional sarnplmg By ignoring the
second spatial dimension, there is an error incurred—
for purposes of establishing guidelines, the error is suf-
ficiently minor that we have chosen to ignore it, al-
though it may be important in some specialized situ-
ations (e.g., strongly anisotropic data distributions). In
addition, irregular sampling can be thought of as in-
creasing the effective sampling interval, provided the
irregularity is not too extreme (Baer and Tribbia, 1976).
That is, nonuniform data at some average interval A,
is roughly equivalent to sampling uniformly at some
larger interval A,. Thus, the following should be un-
derstood to apply in situations where the data are rea-
sonably uniformly (but not necessarily regularly) dis-
tributed.

In theory, the smallest detectable wavelength is the
Nyquist interval (2Ax), which provides three samples
per wave. As seen in Fig. 4, one’s knowledge of such
a wave depends on its phase relative to the sample
points. As a worst case, when the sample points are at
the inflection points, the wave is not detected at all
(Fig. 4). Hence, sampling wavelengths at (or near) the
Nyquist interval is not likely to generate reliable esti-
mates of the function, much less its derivatives.

In fact, the fidelity with which the derivative infor-
mation can be estimated is a good candidate for a
quantitative measure of how ‘“quasi-continuous” the
sample data are. To see this, consider the standard cen-
tered difference estimate of the first derivative.’ Barnes
(1986) has shown that if §f(x) is the finite difference
form of the true derivative f(x), then

* As noted previously, one can find better differencing techniques.
However there are trade-offs in doing so, and our intent here is to
illustrate the effect of data density on finite differencing. Clearly, no
matter how sophisticated one tries to be at differencing, this cannot
make up for all the deficiencies in the sample data.
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FIG. 4. Illustration of how a Nyquist interval wave gives virtually
no derivative information. Three examples of such a wave are shown
having different phase with respect to the grid (solid, dashed, and
dash-dotted curves). The grid samples each example at different points
(squares with filled circles, filled circles, and open circles, respectively).
Straight lines connecting the sample points are shown for each ex-
ample.

o109 = o a7 1s)

where the function itself is given by

. [27x
fx) =4 sm{ 7 },

Ax is the sampling interval, and diff{X) = sin(X)/X is
the so-called diffraction function. Shown in Table 1
are the values of the diffraction function in (15) for
various values of L as integer multiples of Ax. Long
waves (i.e., in comparison to Ax) show very good re-
sponse to the centered differencing, while wavelengths
near the Nyquist show rather pronounced deterioration
of the derivative estimates.

We can interpret diff{X) in Table 1 as a quantitative
measure of the quasi-continuity of the sampled func-
tion. Given some effective sampling interval, Ax, one
can see that it is possible to make the continuum ap-
proximation with relatively negligible error (say, <5%)

for long wavelengths (say, L = 12Ax). For purposes of -

this paper, sampling at wavelengths smaller than 6Ax
is called inadequate. Similarly, we define marginal
sampling to be in the ‘range from 6Ax to
12Ax. What this means to the previous discussion
concerning derivative estimation (via the standard
mapping/differencing technique) is that for wave-
lengths larger than 12Ax, the data can be considered
continuous for many practical purposes, and finite dif-
ference derivative estimates will be accurate to within
five percent, at least within the interior of the grid.
Hence, one way to guarantee the fidelity of derivative
estimation isto smooth out most of the amplitude at
wavelengths below 12Ax. This is not very satisfactory
for many meteorological needs. For comparison pur-
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poses, a wave which is of length comparable to the
entire east-west width of the United States is sampled
roughly 9 to 12 times in the east-west direction by the
operational sounding network. If we wish to retain sig-
nals in the marginally-sampled range (as we define the
term), the traditional approach to derivative estimation
is inevitably contaminated with noise of the form in-
herent in (14), because the continuous form of the
convolution is no longer justifiable and the data are
irregularly-distributed, which precludes using (13).

As if this were not enough of a problem, it is com-
pounded by another difficulty. Recall from the above
that a regular grid of samples can produce the proper
form of derivative estimates, at least in the grid’s in-
terior. Such a sample obviously does not require re-
mapping of the data to obtain a gridded dataset suitable
for finite differencing, but there may be some smooth-
ing desired for controlling the noise in the sample. Also,
one might wish to map the data onto a finer mesh in
order to limit truncation error during finite differenc-
ing. Thus, it may be desirable to apply the convolution
with some weight function as a smoother, even when
beginning with a regular, discrete dataset (see Bettge
and Baumhefner, 1980, for an example). The theory
above suggests that such a process introduces no con-
tamination of the form suggested in (14), at least away
from any boundaries, since the data distribution is reg-
ular,

However, even in this idealized situation, the diffi-
culty is that finite differencing causes yet another prob-
lem. Consider Fig. 5, showing the centered finite dif-
ference stencil used in calculating the derivative esti-
mates at the point (X, yo). Four observation (grid)
points, not including the center point, enter into the
calculation of wind field derivatives (using the standard
difference scheme), so there are eight pieces of infor-
mation used to estimate the first derivative terms in
(3). However, there are only four such quantities to be
found, so that such a process is overdetermined. When
estimating derivatives in this way, the actual infor-
mation content of the data is not being used to its max-
imum extent. '

TABLE 1. Values of the diffraction function for various
wavelengths, L, as multiples of the grid interval, Ax.

L = nAx .
(n) 2wAx/L =X sin(X) diff(xX)
2 3.14159 0 0
3 2094 .866 413
4 1.571 1.0 .637
S 1.257 951 796
6 1.047 .866 827
8 - 785 707 9
10 . 628 588 935
12 524 5 955
15 419 .406 971
20 314 .309 .984

!

1
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FIG. 5. The standard centered-difference stencil (double open cir- ,

cles) for first partial derivative estimates on a square grid (open circles
and light lines) and the centroids (circled dots) of the four triangles
(heavy lines) formed from the five points of that stencil. For the
standard centered difference operator, only the four corner points of
the stencil are used in the calculation. The lattice of triangle centroids
(dots) derived from the original square grid is shown as the octagons
and small squares.

When applying the line integral form of computation
to a regular quadrilateral (instead of a triangle) like
that of Fig. 5, precisely the same answer is obtained as
that given by the standard centered difference approx-
imation [see (3) and (4) in SD79]. Thus, a major part
of the improvement demonstrated by SD79 in esti-
mating the linear vector field properties does not arise
through the line integral formulation, per se. Rather,
it comes from two sources. First, using triangles means
the wind data at the vertices are used to fullest possible
extent. Second, by avoiding the problems inherent in
(14), the derivative estimates are inherently more
faithful to the data.

In order to circumvent the information loss inherent
in the standard approach, the data grid can be used to
construct a triangulation from which derivative infor-
mation is extracted. Thus, one obtains a new mesh of
points at which derivatives are available (i.e., the tri-
angle centroids). For the special case of a square grid
(Fig. 5), the centroids of the triangles formed from the
squares create a lattice of octagons and squares having
an average spacing about 11% greater than the original
square grid. That is, within any 2Ax square area defined
by nine points on the square grid, one finds eight tri-
angle centroids. However, the square grid only uses
half of the total information available for determining
derivatives (as just pointed out above). An alternative
interpretation is that since the triangle method incor-
porates information about derivatives directly, this can
be thought of as a decrease in the effective sampling
interval. (See Stephens, 1971, who concludes that the
minimum definable scale is reduced by a factor of two
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when the analysis incorporates independent derivative
estimates.) If we include the increase in average spacing
(which, by the way, is a direct result of the irregularity
of the centroid distribution), the net information gain
associated with the triangle formulation can be mod-
eled by using an effective data spacing somewhere be-
tween the original spacing and one-half of that. Al-
though there is no rigorous way to defend the choice,
we have approximated the net gain (probably conser-
vatively) to be about equivalent to having a data spacing
% that of the original. Owing to the lack of rigor in
specification of this reduction in the effective data in-
terval, one should not interpret what follows too lit-
erally.

Repeating the calculations of Table 1 using a Ax
which is % that of the original yields the results shown
in Fig. 6. The lower curve is a plot of the values in
Table 1, while the upper curve reveals the possibilities
inherent in using the data to their fullest. The improve-
ment in the derivative estimate via this approach in-
creases as the sampling rate decreases. Assuming that
quasi-continuity begins at a diffraction function re-
sponse of 95%, the triangulation form of derivative es-
timation achieves this at a sampling interval of about
8Ax, instead of 12Ax. Put another way, the quality of
derivative estimates using triangulation for waves of
6Ax is equivalent to centered differencing at wave-
lengths of about 8Ax. Yet another way of seeing how
this influences derivative estimation is to note that
within the marginal sampling range (from 6Ax to
12Ax), triangular estimation of derivatives represents
an improvement of from 10% to 3% (respectively) over
the standard “rectangular” approach.

5. Discussion

In meteorology, it is safe to say that we rarely, if
ever, have so much data that we can afford the luxury

FIDEUITY OF THE FIRST DERIVATIVE
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FIG. 6. Plot of the quality of derivative estimates using the tradi-
tional (rectangular) stencil and the equivalent graph for a triangular
estimation of the derivative, having modeled the information gain
associated with the triangular approach by means of an effective Ax
which is % that of the rectangular form (see text for discussion).
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of not extracting the last possible measure of infor-
mation. Given the great focus curréntly on “mesoscale”
meteorology, it is desirable to push the data we have
into revealing things on wavelengths which are mar-
ginally sampled. What this paper has tried to show is
that the tools of analysis cannot be applied thought-
lessly when operating at the limits of the information
. contained within the data, especially when considering
wind field derivative information.

Several complicating issues have not been treated
within this discussion, such as measurement errors in
the sample data, the effect of aliasing on the true in-
formation content, and so on. While these are non-
trivial effects, they have been treated at length elsewhere
(e.g., see Gandin, 1963; Jones, 1972; Bergman, 1978).

Instead, we have examined some basic characteristics
of the traditional approach to derivative estimation,
which involves a two-step process. It has been shown
that remapping u and v to grid points produces a kind
of contamination of the derivative estimates which be-
comes apparent only as one moves into the realm of
marginally sampled phenomena. For marginal sam-
pling, the traditional approach gives different estimates
than those obtained from a direct evaluation of the
derivatives. The fact that the answers differ becomes
important because of the need to preserve the invariants
of the vector wind field. Further, using the traditional
scheme, the structure of the weight function becomes
a potential source of contamination, depending on its
properties. .

For problems with real data, we have shown that
many of the difficulties in derivative estimation are
associated with nonuniform data distributions. Al-
though not considered in detail, the data domain
boundaries probably constitute the most important
nonuniformity associated with real data distributions.
One subsidiary issue tied to the data boundaries is de-
scribed in the Appendix. We have shown that for
bounded data domains, the only reliable analysis is far
(as we have defined “far’’) from the contaminating ef-
fect of the boundary.

Another serious nonuniformity arises when signifi-
cant gaps exist in the data. This creates a sort of internal
boundary, which means that the second term of (A2)
can become important in (14). If one examines the
traditionally computed finite difference estimates of
vorticity and divergence in SD79 (see their Figs. 5a
and 6a), one sees immediately that many serious errors
of traditional estimation arise within or near regions
of inhomogeneity in the data distribution (data voids
and/or boundaries). When the field itself is flat or when
the data density is high (i.e., the field is locally linear),
the conventional estimates can be reasonably good.
However, the triangulation approach provides consid-
erable improvement in precisely those areas where the
conventional method breaks down (see SD79’s Figs.
5b and 6b). Do not be deceived into thinking of this
as a way of getting something for nothing. Some ad-
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ditional effort (computationally) is required and there
is no known substitute for adequate data.

We can answer the two questions we posed at the
end of section 3 with one generalization. The standard
approach to derivative estimation always is character-
ized by distortions of the sort we have described. How-
ever, these distortions only begin to be significant
whenever the sampling rate falls into the range we have
defined as marginal. Clearly, the short wavelength
components of a wind field will suffer the most deg-
radation. While one may be willing to accept this sort
of error in derivative estimation, we have shown that
it is possible to improve the quantitative estimates of
wind field derivatives through the approach we have
advocated. We also have provided a scheme for more
efficient calculation than the line integral method of
SD79, but which gives identical answers.

It is worth pointing out that the quality of derivative
estimates may well be of relatively little importance to
a particular application of objective analysis to the wind
field. Whenever the vector field itself, and not its de-
rivatives, is of primary interest, a traditional # and v
component mapping of the data to a grid may indeed
be sufficient for one’s needs. By examining the results
shown by SD79 in detalil, it is clear that the adjustments
needed to improve the calculation of the field’s deriv- .
ative properties do not result in substantial changes to
the # and v components. For instance, their Table 1
shows that the root-mean-square difference between
the two techniques is generally less than one m s™!,
hardly worth all the extra effort. Indeed, it is probably
true that the benefit is not worth the cost, provided
that the object of the process happens not to require
accurate derivative information on scales which are
marginally sampled. The fact that it seems possible to
increase the quality of the derivative estimates without
degrading the function itself is an encouraging aspect
of the results seen in SD79.

We have shown that in order to preserve the differ-
ential invariants of the vector field, one should calculate
them directly from the data without a prior mapping
of the components to a grid, in the traditional way.
For a two-dimensional vector field, the first derivative
invariants are scalars (vorticity, divergence, and resul-
tant deformation), except for specification of the de-
formation’s dilatation axis. Curiously, for a scalar field,
the first derivative invariant is a vecror (the gradient).
Although we have concentrated on vector fields, one
can apply this approach to scalar fields, as well.

Finally, consider the subject of how to incorporate
the derivative information in producing a consistent
wind field analysis. The approach advocated in SD79

-involved formulating variational constraints, and solv-

ing the resulting elliptic-type equations to reconstruct
the wind field. We believe that it is possible to blend
the derivative estimates with the wind observations
without having to solve elliptic partial differential
equations. This topic is beyond the scope of the current
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report, but it will be covered in detail in a forthcoming
paper.
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APPENDIX

Although it is not of primary concern within the
body of this work, the weight functions we have been
considering are normalized. That is, they are of the
form '

W(Xn = Xgis Yn — Ve))
N
> Wi
k=1

w(x, — Xgis Yn — ygj) = , (AlD)

where the Wy = W(x, — Xg, Yk — X)) represent the
unnormalized weights. Thus, the sum of the weights at
each point is constrained to be unity. This normaliza-
tion is done to prevent introducing bias into the re-
sulting fields when convolution of the weight function
with the data is done.

" In the fortunate circumstance of uniformly distrib-
uted data, the normalizing factor No = X Wj in the
denominator of (A1) does not vary from point to point.
Applying the gradient operator to (A1) gives

Vi = (TW)/No ~ [N—VOVZ]VNO, (A2)
which reduces to (VW)/Nj for uniform data. Note that
the data need not be regular for the second term in
(A2) to be negligible—merely that the irregularity be
sufficiently minor that the sum of weights is nearly
constant from point to point within the domain.

One significant violation of uniformity occurs
around the boundaries. As shown in Barnes (1964, his

Fig. 4), there is a substantial drop-off in the number
of stations influencing the analysis as one approaches
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the boundaries of a finite data domain. Boundary
problems in general have been examined in detail by
Caracena et al. (1984) and Achtemeier (1986).
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