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ABSTRACT

A neural network, using input from the Eta Model and upper air soundings, has been developed for the
probability of precipitation (PoP) and quantitative precipitation forecast (QPF) for the Dallas–Fort Worth, Texas,
area. Forecasts from two years were verified against a network of 36 rain gauges. The resulting forecasts were
remarkably sharp, with over 70% of the PoP forecasts being less than 5% or greater than 95%. Of the 436 days
with forecasts of less than 5% PoP, no rain occurred on 435 days. On the 111 days with forecasts of greater
than 95% PoP, rain always occurred. The linear correlation between the forecast and observed precipitation
amount was 0.95. Equitable threat scores for threshold precipitation amounts from 0.05 in. (;1 mm) to 1 in.
(;25 mm) are 0.63 or higher, with maximum values over 0.86. Combining the PoP and QPF products indicates
that for very high PoPs, the correlation between the QPF and observations is higher than for lower PoPs. In
addition, 61 of the 70 observed rains of at least 0.5 in. (12.7 mm) are associated with PoPs greater than 85%.
As a result, the system indicates a potential for more accurate precipitation forecasting.

1. Introduction

Forecasts of precipitation are important in a variety
of contexts. The probability of precipitation (PoP) is
important for many decision makers who are sensitive
to the occurrence of precipitation (e.g., Roebber and
Bosart 1996). An accurate quantitative precipitation
forecast (QPF) can identify the potential for heavy pre-
cipitation and possible associated flash flooding, as well
as providing information for hydrologic interests. As
part of the modernization of the National Weather Ser-
vice (NWS), more emphasis is being placed on the local
generation of QPFs and their subsequent use in hydro-
logical models at River Forecast Centers.

Numerical weather prediction models provide direct
QPF guidance for precipitation forecasts. As long as the
predictions contain biases and systematic errors, how-
ever, postprocessing of the output can improve the raw
output. Many statistical methods can be used to do this
postprocessing. Traditionally, these have included the
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‘‘perfect prog’’ technique (Klein et al. 1959) and Model
Output Statistics (MOS; Glahn and Lowry 1972). Both
of these methods use multiple regression techniques to
take model output and convert into forecasts of sensible
weather. They allow for a single model solution to show
uncertainty in the forecast weather. As Murphy (1993)
has shown, such an expression of uncertainty can be
valuable to forecast users. Recently, hydrometeorolo-
gists at the West Gulf River Forecast Center have used
another processing technique, neural networks (Müller
and Reinhardt 1991), to develop a precipitation fore-
casting tool for the Dallas–Fort Worth (DFW), Texas,
metropolitan area. The neural network scheme uses grid-
ded output from the National Centers for Environmental
Prediction’s (NCEP) Eta Model, and upper air soundings
from Fort Worth. The forecasts are for the PoP and 24-h
precipitation amount from 1200 to 1200 UTC. Upper
air soundings are from the beginning of the period and
the Eta Model forecast data are from the 1200 UTC
initialization. Verifying observations are determined by
taking the arithmetic mean of 36 rain gauges in the DFW
area (Fig. 1)1. A precipitation event requires that this

1 We have chosen to use the arithmetic mean for simplicity. It makes
dealing with missing data on any day particularly easy and, given
the density of the gauges over the area, we feel that more complex
techniques may not provide significant additional information.
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FIG. 1. Map of Dallas–Fort Worth area with rain gauge locations indi-
cated by black dots. Major highways and DFW airport are shown.

FIG. 2. A schematic of a neural network with three input nodes
and one output node, with five hidden nodes on two hidden layers.
Three of the 17 weights (links) are also shown. [After Marzban and
Stumpf (1996).]

areal mean be greater than or equal to 0.01 in. (0.25
mm). In this paper, we describe the development of the
neural network forecasts, based initially on data from
1994 and 1995 with subsequent retraining after each
month, and report on the verification of forecasts that
subsequently were made from 1 March 1996 to 28 Feb-
ruary 1998, a period covering 730 days. There are fore-
casts and data available from every day in the period.

2. The neural network

Neural networks provide a methodology for extract-
ing patterns from noisy data. They have been applied
to a wide variety of problems, including cloud classi-
fication (Bankert 1994) and tornado warnings (Marzban
and Stumpf 1996) in a meteorological context. The ad-
vantages and disadvantages of neural networks in com-
parison to other statistical techniques for pattern ex-
traction are discussed in Marzban and Stumpf (1996).
More detail about the construction of neural networks
can be found in Marzban and Stumpf (1996) and Müller
and Reinhardt (1991) and references therein.

The standard procedure for use of a neural network
involves ‘‘training’’ the network with a large sample of
representative data. The network has some number of
input and output ‘‘nodes’’ representing the predictor and
predictand variables, respectively (Fig. 2). In between,
there is a number of hidden nodes arranged in layers.
The number of hidden nodes and layers is usually de-
termined empirically to optimize performance for the
particular situation. Each connection between nodes on
a particular layer and the layer above it can be repre-
sented by a weight, vij, that indicates the importance of
that connection between the ith and jth nodes. The train-
ing phase of the neural network is designed to optimize
the weights so that the mean-squared error of the output
is minimized. For each node at a particular layer, the
input node values from the previous layer are multiplied
by the weight of the connections between the nodes and
then all of the different connections are summed to pro-

duce the value at that node. This process is repeated for
all nodes and then for each layer. The network then can
be used to make predictions based on new input values.
In our application, we have created two networks: a QPF
network for amount of precipitation and a PoP network
for probability or confidence in the forecast.2

The QPF network was developed to predict 24-h areal
average rainfall, not a point maximum rainfall. We com-
pute 24-h (1200 to 1200 UTC) mean daily precipitation
based on precipitation reports from 36 locations around
the Dallas–Fort Worth Metroplex, covering approxi-
mately 5000 km2. For the PoP network, ‘‘nonrain’’ days
were identified as zeroes and ‘‘rain’’ days as ones. The
resulting output of the PoP network was a number be-
tween 0 and 1, which could be multiplied by 100 to
give a percentage. The networks were trained initially
on data from all days from 1994 and 1995, regardless
of the amount of precipitation that occurred.

Input data used to train the networks consist of 19
meteorological variables (Table 1), plus the observed
rainfall. Input variables that can be derived from the
Fort Worth, Texas, upper air soundings are taken from
that source. Other values come from either the initial
analysis or forecast fields from the Eta Model. Model
data were entered from gridded model output read off
of PC-GRIDDS graphics (Petersen 1992) and text val-
ues from NWS products (Eta ‘‘FOUS’’) produced by

2 The network was constructed using an ‘‘off-the-shelf’’ commer-
cial neural network software package, Brainmaker, manufactured by
California Scientific Software. Note that use and mention of a com-
mercial product does not constitute endorsement by the United States
government.
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TABLE 1. Atmospheric variables used in neural network. Variables
labeled ‘‘12-h forecast’’ are taken from the Eta Model. Other variables
come from Fort Worth (FWD) sounding data.

Variable Source

Precipitable water
Precipitable water 24-h change
K index
K index 24-h change
850-mb theta-e
850-mb theta-e advection
850-mb wind speed and direction
700-mb theta-e
700-mb vertical velocity
700-mb temp
700-mb temp advection
500-mb wind speed and direction
500-mb vorticity
850–300-mb thickness
850–300-mb differential divergence
1000–850-mb moisture divergence
850-mb mixing ratio
250-mb divergence
700–500-mb lapse rate

Observed
Observed
Observed
Observed
Observed
12-h forecast
Observed
Observed
12-h forecast
Observed
12-h forecast
Observed
12-h forecast
12-h forecast
12-h forecast
12-h forecast
12-h forecast
12-h forecast
Observed

TABLE 2. Most significant variables in neural network forecast for
(a) warm season and (b) cool season.

(a) Warm season
Precipitable water
850–300-mb differential divergence
Precipitable water → 24-h change
K index → 24 h change
250-mb divergence
850-mb theta-e
700-mb vertical velocity
K index
1000–850-mb moisture divergence
850–300-mb thickness

(b) Cool season
Precipitable water
700-mb vertical velocity
Precipitable water → 24-h change
250-mb divergence
850–300-mb differential divergence
500-mb vorticity
K index → 24 h change
K index
850-mb theta-e
1000–850-mb moisture divergence

NCEP. Various ‘‘test’’ networks were developed to de-
termine the number and combination of meteorological
variables that would provide the best possible ‘‘picture’’
of the available moisture, lift, and instability. Initial de-
velopmental networks were small and focused primarily
on the key ingredients usually present for heavy to ex-
cessive rainfall (Junker 1992; Borneman and Kadin
1994). Additional variables were included later, based
on experience from decision tree approaches to QPF
(e.g., Johnson and Moser 1992). We eventually ended
up with the 19 meteorological variables presently being
used.

The networks were designed with three important fea-
tures. The first was year-round applicability. Networks
were developed separately for both the ‘‘warm’’ (April–
October) and ‘‘cool’’ (November–March) seasons. The
second feature was to expedite the entire process by
running both the QPF and PoP networks simultaneously,
and generate the output on one computer at the same
time. Last, the networks are interactive; as such, one
can change any of the variables desired and ‘‘rerun’’
the networks to accommodate any anticipated meteo-
rological changes. This ‘‘interaction’’ is proving to be
a great learning technique for forecasters by allowing
them to carry out ‘‘what if’’ exercises. For example, if
forecasters believe that the model is not handling mois-
ture return well, they can vary the input value and see
what effect that has on the forecast. If the timing of
frontal passage is in question, values from another lo-
cation on the other side of the front can be tested.

Numerous sensitivity analyses have been completed
on the networks. The network is retrained and a sen-
sitivity analysis is done every month to see if, and how,
the importance of various parameters changes. The anal-
ysis ranks the variables by how well the individual pa-
rameter value correlates with the output forecast. The

most important variables, based on an average of 12
months of analysis, are somewhat different for the warm
and cool season networks, but precipitable water is the
most important in each case (Table 2). The forecasts
presented here are those done in real time, so that in-
formation from the previous month’s retraining is in-
cluded. These analyses change slightly after each net-
work retraining, but the performance of the network was
not significantly different in the two March–September
periods after the initial training period of 2 yr. This
indicates that little additional skill has been derived after
the initial training period. It is possible that the retrain-
ing process may have preserved skill by continually
‘‘nudging’’ the network toward reality.

The training cycle is stopped by the operator. For the
initial and retraining processes, the number of iterations
used by the software was about 500 000. Ten percent
of the data were set aside from each training cycle and
used to test the network performance. The sensitivity
analysis consists of correlating the value of the indi-
vidual parameter with the output forecast of the network
and seeing if, and how, the importance of the different
parameters changes from month to month. Changes
were small during the post–initial training phase and the
listing of parameters in Table 2 is an average placement
over a period of 12 months.

3. Results

a. Probability of precipitation (PoP)

An attributes diagram (Hsu and Murphy 1986) sum-
marizes the performance of the probability of precipi-
tation (PoP) forecasts graphically (Fig. 3). For conve-
nience in presentation, we have combined the forecasts
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FIG. 3. Attributes diagram for PoP forecasts. Line at 458 is perfect
reliability. Heavy line is observed frequency of precipitation given
forecast probability and light line is frequency of use of forecast
value. Shaded region is area where forecasts contribute positively to
skill compared to Brier score of climatological forecast.

into 11 categories, rounded to the nearest 10%. It rained
only once out of 436 forecasts in the 0% category and
it rained on all 109 forecasts in the 100% category. The
PoP was underforecast for all categories from 10%
through 90%. In fact, it rained on all forecasts with a
PoP greater than or equal to 38.5%. However, it is im-
portant to note the frequencies at which forecasts were
issued. The two most common forecast categories were
0% (59.7% of forecasts) and 100% (15.2% of forecasts).
Only 11.1% of the forecasts were in the 30%–80% cat-
egories. As a result, the forecasts had the desirable prop-
erties of sharpness and resolution (Murphy 1993). From
this sample, it would appear that simple recalibration
of the forecasts could be done to increase the forecast
PoP to 100% when the system produces values above
approximately 40%. The mean forecast PoP was 26.0%
and the frequency of observed rain in the sample was
34.2%.

The sharpness of the forecasts and the nearly perfect
performance for the forecasts of 0% and 100% lead to
a skillful forecast system, with respect to climatology.
The Brier score (BS; Brier 1950; Wilks 1995) averages
the squared differences between forecasts and events:

n1
2BS 5 ( f 2 x ) , (1)O i in i51

where f i is the ith forecast, xi is the ith event (xi 5 0%
for no rain and 100% for rain), and n is the number of
forecasts. A skill score, SS, can be computed using the
performance of some reference forecast system:

BS
SS 5 1 2 , (2)

BSref

where BSref is the Brier score of the reference system
(Wilks 1995). Using the sample climatology (34.2%) of
the probability of precipitation as the reference system,
SS for the neural net forecast is 73.0%.

Unsurprisingly, the cool season PoP network (No-
vember–March) is somewhat more accurate than the
warm season network relative to climatology (April–
October). The SS for the cool season is 79.1% (sample
climatology 5 32.1%), while it is only 67.4% for the
warm season (sample climatology 5 35.5%). Although
the warm season PoP network has better reliability in
the 10%–30% PoP range, as evidenced by the plot of
observed frequency of precipitation being closer to the
perfect reliability line (Fig. 4), this is offset by the fore-
casts being noticeably less sharp than the cool season
forecasts. Over 83% of the cool season forecasts have
PoPs either less than 5% or greater than 95%. Only 68%
of the warm season forecasts fall into those categories.
The cool season PoP network tends to be particularly
confident in no-rain situations. Over 65% (198 of 302)
of the total forecasts have PoPs less than 5% and only
one of those is associated with rain.

We have also evaluated the Brier score against base-
lines of persistence. Persistence, defined as ‘‘did it rain
the day before?,’’ is a much worse forecast than sample
climatology (SS 5 242%). It is possible that ‘‘was it
raining at 1200 UTC?’’ would be better than standard
persistence, but it is unlikely to be significantly better
than sample climatology. Using the last 729 days of the
period, there are 362 correct persistence ‘‘forecasts’’ of
no rain, so that all of those have zero error points. There
are 117 persistence forecasts of no rain that are asso-
ciated with rain events. The simplest assumption is to
assume that it was not raining at 1200 UTC in any of
those, so that all of those have maximum error points
(100% squared). There are also 117 events with no rain
that are associated with rain on the previous day. Using
the assumption that it was not raining at 1200 UTC on
any of those, they all get no error points. There are 133
rain events with rain occurring on the previous day. In
order for the ‘‘1200 UTC persistence’’ forecast to be
more skillful than the sample climatology, the frequency
of rain at 1200 UTC on those days would have to be
greater than 35%. Given that the frequency of rain on
a day, given that it rained any time the day before, is
only 53%, it seems unlikely that the frequency of rain
at 1200 is as high as 35%. Even if there are no errors
in those cases, which seems exceedingly unlikely, it
would only lower the Brier skill score improvement to
62%.

b. Quantitative precipitation forecasts

The distribution of forecast and observed precipita-
tion amounts illustrates the accuracy of the forecasts
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FIG. 4. Same as Fig. 3 except broken down by seasons: (a) cool
season (November–March), (b) warm season (April–October).

FIG. 5. Forecast and observed amounts for QPF in mm for all cases.
Solid line at 458 is perfect reliability. Dashed line is least squares fit
to data.

TABLE 3. A 2 3 2 contingency table for dichotomous forecasts of
dichotomous events with various scores used in text defined.

Events

Y N Sum

Forecast Y
N
Sum

a
c
X1

b
d
X0

F1
F0
N

POD (probability of detection) 5 a/X1. FAR (false alarm rate) 5
b/F1. TS (threat score) 5 a/a 1 b 1 c. ETS (equitable threat score)
5 a 2 CH/a 1 b 1 c 2 CH, where chance (CH) 5 F1(X1)/N. Heidke
skill score (HSS) 5 2(ad 2 bc)/X1(F0 1 X0)F1. True skill statistic
(TSS) 5 ad 2 bc/X1(X0).

(Fig. 5). The linear correlation coefficient between the
forecast and observed amounts is 0.95. The least squares
linear regression fit shows there is a small conditional
bias, with precipitation amounts less than 0.13 in. (;3
mm) being overforecast and higher amounts being un-
derforecast. Correlation for the cool season QPF is 0.95
and for the warm season it is 0.86, again illustrating the
somewhat better performance of the networks in the
cool season.

By considering QPF as a forecast of rain greater than
a certain threshold, the problem can be broken down
into a series of 2 3 2 contingency tables, each for a
different threshold value. Thus, for example, we can

consider the performance of the system for forecasts
and observations of rain greater than 0.5 in. (12.7 mm).
Then, standard measures of performance of the system
for 2 3 2 contingency tables can be computed for each
threshold (see Table 3) (Doswell et al. 1990; Murphy
1996). The probability of detection of rain is above 0.75
for almost all threshold values up to 1 in. (25 mm) (Fig.
6). At the same time, the false alarm rate is quite low,
below 0.20 for all thresholds between 0.08 in. (2 mm)
and 1 in. (25 mm). As a result, the threat score or critical
success index [originally known as Gilbert’s ratio of
success (Gilbert 1884)3] never goes below 0.63 for any

3 Murphy (1996) discussed the problem of multiple names and
repeated ‘‘rediscovery’’ of the basic parameters of the 2 3 2 con-
tingency table. We cite the original authors here. For more information
on the nature of the scores, see Murphy (1996) and Doswell et al.
(1990).
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FIG. 6. Summary measures of QPF as functions of precipitation
threshold (forecasts and observations greater than amount on ab-
scissa). Plotted functions are probability of detection (POD), false
alarm ratio (FAR), threat score (TS), and equitable threat score (ETS).

FIG. 7. As in Fig. 6 except for summary skill measures. Plotted func-
tions are true skill statistic (TSS) and Heidke skill score (Heidke).

threshold between 0.03 in. (1 mm) and 1 in. (25 mm).
The equitable threat score (ETS; Rogers et al. 1996),
which is designed to penalize overforecasting events in
comparison to the threat score, follows the threat score
and is only slightly lower at the low threshold values
[minimum value 0.63 between 0.05 in. (;1 mm) and 1
in. (;25 mm)], where some overforecasting exists.
These values are quite high, in comparison to opera-
tional numerical weather prediction systems, where the
ETS rarely exceeds 0.44 (e.g., Rogers et al. 1996).

Skill measures, such as true skill statistic [TSS, also
known as Kuiper’s performance index, originally Peirce’s
‘‘i’’ (Peirce 1884)] and the Heidke skill score [originally
Doolittle’s association ratio (Doolittle 1888)] are cor-
respondingly high (Fig. 7). They calculate the perfor-
mance of a forecasting system relative to how well a
system based purely on chance would do. The TSS is
greater than 0.68 for all values from 0.05 in. (;1 mm)
to 1 in. (25 mm) and Heidke skill score is above 0.77
for that range. These values indicate that the neural net
is performing far better than chance for a wide range
of values of precipitation.

It was noted earlier that rain occurred for all forecasts
with a PoP greater than or equal to 38.5%. Recalibration
could improve the reliability of the PoP forecasts, but
the raw output PoP has value in the QPF problem; that
is, the correlation between forecast and observed pre-
cipitation amounts increases with the PoP. For the 58

4 Direct comparison of the ETS between the two methods should
be done with caution, since the time periods of the two forecasts
(operational NWP and the neural network) are different and, as such,
it is possible that some of the difference is related to the time and
space scales.

cases where rain occurred with forecast PoPs less than
38%, the correlation was 0.64. The correlation increases
to 0.76 for the 52 cases of PoPs between 38.5% and
85%, and reaches 0.94 for the 140 cases with PoPs
greater than 85%. Thus, increasing PoPs indicate greater
confidence in the forecast amount of precipitation. This
result is consistent with that found by Wilks (1990),
using conditional probabilities for precipitation amount,
given an MOS forecast PoP. It is possible that the con-
sistency of the two networks is partially a result of the
same input variables being used for each network, so
that they respond to similar kinds of input.

Separating out those three classes also illustrates an-
other feature of the system, the tendency to increase
PoPs with higher forecast precipitation amount (Fig. 8).
Forecast or observed precipitation exceeded 0.4 in. (10
mm) in only one case for the low PoP class and exceeded
0.90 (23 mm) in only one case for the medium PoP
class. In the high PoP class, 12 of the 102 cases had
both forecast and observed precipitation greater than 1
in. (25 mm). The network still produces high PoPs for
some light rain events. Twenty-one of the 140 high PoP
cases had QPF values of 0.1 in. (2.5 mm) or less. Cor-
responding with the tendency for heavy rainfall events
to have higher PoPs, the average precipitation increases
with increasing PoP (Table 4). The mean value of pre-
cipitation for the high PoP case is only slightly less than
the maximum value in the low PoP case. As a result,
forecasters using this system can calibrate their confi-
dence in both ordinary and extreme rainfall events.

4. Closing remarks

The neural network has produced a remarkably good
forecast of both the probability and amount of precip-
itation for the Dallas–Fort Worth area. The sharpness
and accuracy of the high confidence PoPs (POP , 5%
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FIG. 8. As in Fig. 5 except forecasts are broken down by PoP: (a) PoP , 38%, (b) 38% , PoP # 85%, (c) PoP . 85%.

TABLE 4. Summary measures of association and central values for QPF by PoP class for cases in which rain occurred. Number of cases
in parentheses after correlation. Values under forecast and observed columns in in. with mm in parentheses.

PoP class Correlation (n) Forecast mean Observed mean Forecast median Observed median

PoP , 38%
38% , PoP # 85%
85% , PoP

0.64 (58)
0.76 (52)
0.94 (140)

0.10 (2.5)
0.22 (5.6)
0.53 (13.5)

0.07 (1.8)
0.24 (6.0)
0.58 (14.7)

0.07 (1.8)
0.13 (3.3)
0.39 (9.8)

0.03 (0.8)
0.17 (4.3)
0.44 (11.2)

and PoP . 95%) are especially notable. Clearly, ad-
ditional work needs to be done to test the network. In
particular, the applicability to other locations is an im-
portant issue. However, the relative performance of the
network could fall off significantly and still be a valu-
able forecast tool. Such techniques show promise for
improving precipitation forecasts dramatically, partic-

ularly for applications requiring accurate areal precip-
itation forecasts. It is possible that they may be a useful
tool for processing model output for other forecast prob-
lems as well.

Acknowledgments. We thank Messrs. Greg Story and
Mike Thompson of the West Gulf River Forecast Center



JUNE 1999 345H A L L E T A L .

for their work in support of this project. Special thanks
go to Mike Foster, science and operations officer at
NWSFO Fort Worth for his efforts. Credit for the orig-
inal concept behind developing these networks is given
to Mr. Mike Gillispie (Gillispie 1993). In addition, com-
ments from three anonymous reviewers were extremely
helpful.

REFERENCES

Bankert, R. L., 1994: Cloud classification of AVHRR imagery in
maritime regions using a probabilistic neural network. J. Appl.
Meteor., 33, 909–918.

Borneman, R., and C. Kadin, 1994: Catalogue of heavy rainfall cases
of six inches or more over the continental U.S. NOAA Tech.
Rep. NESDIS 80, 64 pp. [Available from NOAA/NESDIS, 5200
Auth Rd., Suitland, MD 20746.]

Brier, G. W., 1950: Verification of forecasts expressed in terms of
probabilities. Mon. Wea. Rev., 78, 1–3.

Doolittle, M. H., 1888: Association ratios. Bull. Philos. Soc. Wash-
ington, 7, 122–127.

Doswell, C. A., III, R. Davies-Jones, and D. L. Keller, 1990: On
summary measures of skill in rare event forecasting based on
contingency tables. Wea. Forecasting, 5, 576–585.

Gilbert, G. K., 1884: Finley’s tornado predictions. Amer. Meteor. J.,
1, 166–172.

Gillispie, M., 1993: The use of neural networks for making quanti-
tative precipitation forecasts. NWS Southern Region Technical
Attachment SR/SSD 93-42, 21 pp. [Available from National
Weather Service, Southern Region, 819 Taylor St., Room 10A26,
Fort Worth, TX 76102.]

Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output
Statistics (MOS) in objective weather forecasting. J. Appl. Me-
teor., 11, 1203–1211.

Hsu, W.-R., and A. H. Murphy, 1986: The attributes diagram: A
geometrical framework for assessing the quality of probability
forecasts. Int. J. Forecasting, 2, 285–293.

Johnson, G.A., and J. Moser, 1992: A decision tree for forecasting

heavy rains from mid-latitude synoptic patterns in Louisiana
generally from late fall through spring. NOAA Tech. Memo.
NWS ER-87, 24 pp. [Available from National Weather Service,
Eastern Region, 630 Johnson Ave., Bohemia, NY 11716.]

Junker, N. W., 1992: Heavy Rain Forecasting Manual. National
Weather Service, 91 pp. [Available from National Weather Ser-
vice Training Center, 617 Hardesty, Kansas City, MO 64124-
3032.]

Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction
of five-day mean temperature during winter. J. Meteor., 16, 672–
682.

Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado
prediction based on Doppler radar-derived attributes. J. Appl.
Meteor., 35, 617–626.

Müller, B., and J. Reinhardt, 1991: Neural Networks: An Introduction.
Vol. 2, The Physics of Neural Networks Series, Springer-Verlag,
266 pp.

Murphy, A. H., 1993: What is a ‘‘good’’ forecast? An essay on the
nature of goodness in weather forecasting. Wea. Forecasting, 8,
281–293.
, 1996: The Finley affair: A signal event in forecast verification.
Wea. Forecasting, 11, 3–20.

Peirce, C. S., 1884: The numerical measure of success of predictions.
Science, 4, 453–454.

Petersen, R. A., 1992: A PC-based system for the display of gridded
WAFS data. Proc. WMO Tech. Conf. on Tropical Aeronautical
Meteorology (TECTAM-92), Geneva, Switzerland, World Me-
teorological Organization, 1–6.

Roebber, P. J., and L. F. Bosart, 1996: The complex relationship
between forecast skill and forecast value: A real-world analysis.
Wea. Forecasting, 11, 544–559.

Rogers, E., T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M.
Baldwin, N. W. Junker, and Y. Lin, 1996: Changes to the op-
erational ‘‘early’’ Eta analysis/forecast system at the National
Centers for Environmental Prediction. Wea. Forecasting, 11,
391–413.

Wilks, D. S., 1990: Probabilistic quantitative precipitation forecasts
derived from PoPs and conditional precipitation amount cli-
matologies. Mon. Wea. Rev., 118, 874–882.
, 1995: Statistical Methods in the Atmospheric Sciences. Aca-
demic Press, 467 pp.


