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1. Introduction

Doswell (1984) finds correctly that vorticity, al-
though it does not appear explicitly in the formula for
frontogenesis, affects frontogenesis through rotation of
the isotherms. According to Petterssen (1956, p. 204)
and Davies-Jones (1982, p. 178), the presence of vor-
ticity causes the isotherms to crowd together in a dif-
ferent direction from that of the dilatation axis. To
confirm his intuition, Doswell used a kinematical
model with a specified steady flow (a nondivergent
vortex) and a given initial field of a conservative passive
scalar, Q. However, in solving the advection equation
he used an admittedly large time step (equal to the
time for the vortex core to turn through 1 radian) which
led to appreciable truncation errors in his solutions.
For instance, Q is not conserved as it should be (ap-
parent from his Figs. 2, 6, and 10 for parcels moving
around the circle of maximum winds). Also note that
|VQ| at the origin changes from 1 to 1.5 in one time
step (see his Figs. 3 and 7). Since the flow in the neigh-
borhood of the origin is one of solid-body rotation, no
change in |VQ| is anticipated there. Furthermore, Do-
swell’s method of marching the Q-field and the VQO-
field forward in time allows him to proceed only one
or two time steps before the mathematics becomes in-
tractible.

The purposes of this correspondence are to point
out that the advection equation is a linear, first order,
partial differential equation in Q that has a well-known
analytical solution for all time, and to explore the
properties of this solution for a general nondivergent
vortex flow,

2. The analytical solution and its properties

If (X, Y) are the initial Cartesian coordinates of the
air parcel located at (x, y) after time ¢ (ie., its Lagran-
gian coordinates), then the solution of the advection
equation

dQ _ 90

— +v-VQ=0

dt ot ()

in two dimensions is simply

ox, y,0)= F[X(x, y, 1), Y(x, y, 0)] (2)

where F(x, y) = Q(x, », 0) is the initial distribution of
Q (equals —tanhy in Doswell’s exampie). Physically,
(2) is a statement that Q is conserved, following the air
motion. All that remains to be done is to express X, ¥
in terms of x, y at time ¢ for the flow in question. In
Doswell’s case, the specified velocity is steady and
purely tangential, V(r), so that a parcel initially at polar
coordinates (R, ©) moves in time ¢ to the point (R, ©
+ wt) where w(r) = V(r)/r is the angular velocity at
radius r. For a vortex flow, it is easier to work in polar
than Cartesian coordinates, and so we replace (2) by
its equivalent,

Q(r, 6,0 = f(R, ©) 3

where the initial and present coordinates are related
by

r=R (4a)
8 =0 + R (4b)
for steady tangential flow. In Doswell’s example
Sf(r, 8) = —tanh(r sind), 5)
o(r) = —lr- sech?r tanhr, 6)

where w decreases monotonically from one at the center
to zero at infinity. The divergence, vorticity, shearing
and stretching deformations (6, ¢, v, ¢, respectively) of
any tangential flow are given in order by (0, 2w + D,
D cos26, —D sin260) where D = rdw/dr (or Rdw/OR),
the resultant deformation is | D], and the angle between
the dilatation axis and the x-axis, 3, equals tan™![(| D}
— €)/v]. Where D is negative, 8 = 6 — w/4, and where
it is positive, 8 = 0 + /4. For Doswell’s flow

1
D= sechz{sechzr — 2 tanh?®r — P tanhr] (@)

is negative everywhere except at the axis and infinity
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where it is zero. In polar coordinateS, the rate of strain
tensor for this type of flow is

(O D/Z)
D/i2 0

(Batchelor, 1967, p. 603), and has only off-diagonal
elements since the deformation in this coordinate sys-
tem is due totally to shear (there is no extension). The
zero diagonal elements here are consistent with the di-
latation axis (a principal axis) making an angle of 45°
with the coordinate curves (see Davies-Jones, 1982).

To generalize Doswell’s flow, let w(r) be any radial
distribution of angular velocity and the initial O-field
be one-dimensional (i.e., varies only in one-direction,
chosen to be the y-direction without loss of generality),
but otherwise unspecified. Thus,

Q(r, 8, 0) = ()

where ¢ is an arbitrary differentiable function of one
variable and

Y = R sin© = rsin[f — w(r)1]. (8)
The Q-field at time ¢ is given from (3) by
o, 0,1 = gfrsin(6 — wt)] . )
and its gradient is described by
0
a—? = g'(Y)[sin(0 — wt) — tD cos(f — wt)], (10a)
190 _
v g'(Y) cos(f — wi), (10b)

VOl = |¢'(Y)|[1 — 2¢D sin(f — wf) cos(§ — wt)
+ £2D? cos’(f — wt)]'?  (10c)

where the prime denotes differentiation with respect
to Y. Note that at the origin for all time, |VQ| = |¢(0)],
= 1 in Doswell’s case as anticipated above. The ad-
vection of Q, given from (4), (8), and (10b) by

—w 99 _ —w(R)RG'(R sin©) cosO,

, ) (11)

is clearly conservative here, but this constraint is not
upheld by Doswell’s approximate solutions (contrast
the maximum values in his Figs. 5 and 9). From (10),
the angle ¢ which the Q-isopleths (henceforth called
isotherms) make with the radials (measured counter-
clockwise from the radials) is determined by

tang = —tan(f — wt) + ¢D. (12)
Taking the azimuthal average (with r and ¢ fixed) yields
(tang) = +1D (13)

where the angular brackets denote the averaging op-
erator. Recall that the angle between the dilatation axis
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and the radial, 8 — 0, equals sgn(D)x/4, [where sgn(x)
= x/|x|]. Let « = ¢ — B + 6 be the angle between the
isotherms and the axis of dilatation where |a| > 7/4
for frontolysis and |a| < 7/4 for frontogenesis. For ¢
= 0, the average value of |«| is 7/4 signifying no net
frontogenesis, but for positive time |a| < 7/4 in the
mean, indicating that any tangential flow with differ-
ential rotation acting on any initial distribution of
straight isotherms is frontogenetical overall (except at
the very start).

The frontogenetic function F = d|VQ|/dt is given by

F=e-dVQ/dt (14)

where e is the unit vector in the direction of VQ. By
eliminating the Eulerian coordinates on the right sides
of (10) in favor of the Lagrangian ones using (4) and
then differentiating with respect to time, we obtain

dvQjdt = —q'(Y) cosODr (15)

where r is the unit vector in the radial direction.
Thus, the vector, dVQ/dt, points radially inward or
outward, and its magnitude is a conservative quantity.
From (10)

oo = aQ/or
[vol
sin@ — ¢D cosO
sgnlg(¥)] [1 = 2¢D sin© cosO + t*D? cos*0]'2’
(16)
hence,
sin® cosO — tD cos’O
F=—|¢' .
= ~leip [1 — 2t sin© cosO + 12D? cos?0O]'/?
(17)
Incidentally, note from (10) and (17) that
1 90 130
- _——%Ep-& 1
F="NaaP o (18)

which is consistent with the tensor equation for F given
by Davies-Jones [1982, Eq. (13)]. Clearly, as ¢t — oo,
F — |¢'(Y)D cosO| which is positive definite and de-
pends solely on the Lagrangian coordinates, (R, ©), so
that F becomes increasingly conservative. Also notice
that F as a function of Eulerian coordinates depends
on both w and D and so is affected by vorticity and
deformation in partly separate ways. Vorticity’s sepa-
rable effect here is to redistribute the F-values spatially
without changing the population distribution of F-val-
ues. A different behavior characterizes a nondivergent
linear velocity field, where vorticity and deformation
are totally independent and the growth rate of F at
large time can be shown to equal (D2 — {?)/2, Thus,
increasing the vorticity of the latter flow ultimately
slows down frontogenesis (by turning the isotherms out
of alignment with the dilatation axis).
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3. Physical interpretation

The results may be interpreted simply in terms of
“isotherm stretching.” For two parcels initially located
in the vortex at (R, O) and (R + dR, O + dO), the
separation distance ds(¢) at time ¢ is given by

ds¥(t) = (1 + t*D»dR?
+.2tDAR(RAO) + (RdO)? (19)

{obtained from ds? = dx* + dy?, x = R cos[O + w(R){],
y = Rsin[O + w(R)]}. Along an isotherm, y = R sin©
is constant and thus

dR sin® + R cosO dO = 0,
so that for two parcels on the same isotherm
ds*(t) — ds*0) = dR*(t*D? — 2tD tan©). (21)

For D < 0(>0), isotherm stretching occurs initially only
in the first and third (second and fourth) quadrants of
the xy-plane, with shrinking in the other two quadrants,
but ultimately stretching is ubiquitous. Because the
isotherms are material lines and the areas of material
surface elements in the xy-plane are conserved, iso-
therm stretching must be accompanied by packing of
the isotherms. Since the circles of constant range from
the origin are fixed material lines, the gradients of Q
tighten in the radial direction only, i.e., normal to the
flow, as revealed by (10). The equation of the isotherm
with the value ¢(Y,), where Y is constant, is from (8)

0 = sin™(¥y/r) + w(r)t. (22)

Thus, this isotherm touches (but does not cross) the
range circle r = Y,, crosses each larger range circle in
two points, and is wound tighter and tighter around

(20)
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the Y,-range circle by the differential rotation of the
flow. The property of VQ becoming predominantly
radial allows the general increase in frontogenesis in
the differentially rotating vortex, as evidenced by (14)
and (15), but as the angle between the streamlines and
isotherms approaches zero asymptotically in time, the
frontogenetic function for each parcel approaches a
value determined by the parcel’s initial position and
Q-value and the local flow deformation at its radius.
The frontogenetic function does not tend to zero even
though |a| tends to /4 because the gradient of Q in
the radial direction tends to infinity.

4. Conclusions

In summary, an exact solution for the kinematic
analysis of frontogenesis associated with a nondivergent
vortex has been presented. This solution, being ana-
lytical, applies for all times and for a class of flows,
instead of the limited evolution and the one specific
flow considered by Doswell (1984). Although Doswell’s
model suffers from truncation errors, this work con-
firms the general validity of his conclusions.
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