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A property of thermodynamic diagrams that tradi-
tionally has received considerable emphasis is whether
or not a given diagram has the “equal area” property:
that is, equal areas on the diagram correspond to equal
amounts of work/energy. This has its basis in the co-
ordinate transformation between a so-called p-« dia-
gram and the one in question. Classical thermody-
namics as presented in textbooks (e.g., Resnick and
Halliday 1966, p. 559) shows processes on a pressure—
volume diagram (or p-V diagram). In meteorology, it
is common to use specific volume (&, which is volume
per unit mass, or inverse density), and the equation
of state is given by pa = RT, where R is the gas constant
for dry air and T is the temperature.

The work done by (or on ) a gas during some process
is given by

W=f pda, (1)

where the specific volume changes from o to «, during
the process. If the process follows some closed curve
and returns to its starting state, then (1) is given by
the area enclosed on the p—« diagram:

W= ﬁpda. (2)

Of course, it is well understood that heat energy and
work are equivalent, as first shown by Joule. The chal-
lenge in constructing thermodynamic diagrams for
meteorology is to transform the diagram’s coordinates
in such a way that the area on the transformed diagram
is proportional to its area on a p-a diagram, where
(2) holds. As discussed in numerous textbooks (e.g.,
Hess 1959, p. 65 fI.; Beers 1945, p. 363 fF.; Iribane and
Godson 1973, p. 79 fT.), this involves transforming from
(p, @) coordinates to some other system, say (4, B).
Thus, one has the transformation

4 =A(p, &),

B = B(p, a), (3a)
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and the associated inverse transformation
p=p(A,B), a=oalA,B). (3b)

The key mathematical issue in preserving the prop-
erty that area corresponds to energy on the new (A,
B) diagram is that the Jacobian of the transformation
(3a),

J=— == — - — , 4
be equal to a constant, It is shown in many textbooks
that the following common meteorological diagrams
have this property: the tephigram, the skew 7T-log p
diagram and the emagram. On the other hand, the
widely-used Stiive diagram (also known as the “pseu-
doadiabatic” diagram) does not have this property.

This much is widely known. However, I have found
that a certain misconception about estimating the en-
ergy enclosed within areas on area-preserving diagrams
is common; viz., that one can find the energy within
some area on such a diagram by counting the number
of 87— 66 “boxes” formed by the isotherm interval, 67,
and the dry adiabat interval, 86. It turns out that this
is not quite true (as implied by McGinley [1986] but
not explained ). The error incurred when making this
approximation on an area-preserving diagram is of
roughly the same order as assuming that equal areas
on a Stiive diagram comprise equal energies: such an
area is about 25% smaller at 400 mb than at 1000 mb,
and so the energy contained within is correspondingly
in error. One actually can see this on a skew 7-log p
diagram quite clearly (see Fig. 1).

The origin of the problem can be shown first math-
ematically by considering yet another coordinate
transformation, as applied to an area-preserving dia-
gram, such as the skew T-log p diagram. Hess (1959,
p. 70 fI.) notes that coordinates of this diagram are
given by

x=T+ K Inp, (5)

where K is a constant chosen to make the angle between
isotherms and dry adiabats as close to 90° as possible.
Thus, we can perform a coordinate transformation
from (x, y) on a skew T-log p diagram to (T, 8) co-

= —R Inp,
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ordinates, which form the boxes purporting to_corre-
spond to equal energy; this is given by

v K K
T=x+=y, 0=|x+—y]|evelne
RY ( x+ 5 y) (6)
where p, is the reference pressure used in potential
temperature (normally, 1000 mb) and ¢, is the specific
heat at constant pressure. Now the Jacobian of this
transformation is found, using (5) and (6), to be

(T, 6) _ (T, 6) &(T,Inp)
d(x,y) 9o(T,Inp) d(x,y)

_ a6 (—1)_2
d(lnp) R ¢

which clearly is not constant. On the other hand, if the
transformation were to (7, ¢, In8) instead of (T, 4),
it is easy to verify that

(T, ¢, Inb) _
a(x, y) . (®)

Now (7) verifies mathematically what can be seen in
Fig. I, while (8) suggests a way to repair the deficiency.

It turns out that there is a relatively simple change
that could be implemented on any area-preserving dia-
gram. It is well-known (e.g., Hess 1959, p. 32 ff) that
for a process following a closed path on a thermody-
namic diagram,

(7
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FIG. 1. An example of two “boxes” (stippled) formed by isotherm-
dry adiabat intersections on a skew 7-log p diagram, illustrating the
change in area from one part of the diagram to another. Note that
on this diagram, 67 = 10C and 66 = 10C, while adiabats and isotherms
are labelled in C and isobars in mb.
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FIG. 2. An example of showing the area preservation of “boxes”
similar to those in Fig. 1, but on a diagram with dry adiabats re-
drawn to correspond to a constant difference in entropy (in units of
J kg™! K1) rather than potential temperature, allowing the isotherm-
dry adiabat boxes to have equal area across the whole diagram. A
constant value of 1005 J kg™! K™ was used for ¢,. On this diagram,
8T is the same as on Fig. 1, while ¢ = 32 J kg ™' K™!; the dry adiabat
corresponding to 40C is chosen as a “reference” adiabat and is the
same as on Fig. 1. The dry adiabats also are labelled with their cor-
responding #-values (in C). Observe that the product 6¢ X 67 has
units of J kg !, which is the correct units for energy; on this diagram,
each box has an associated energy of 320 J kg™'.

where ¢ is the entropy, which is related to the potential
temperature by ¢ = ¢, Inf." Interestingly, the “phi” in

.tephigram (or “7-¢ diagram’) denotes the entropy,

but the dry adiabats on ordinary tephigrams (as on
skew T-log p diagrams) have been chosen to corre-
spond to equal potential temperature intervals (66) and
so the spacing of 6-lines along an isotherm is exponen-
tial rather than linear. If the interval between dry adi-
abats corresponded to a constant ¢-interval, rather than
a constant f-interval, and one estimated the integral
by counting 67-6¢ boxes instead of 67-660 boxes, there
would be no variation in area of such boxes on any
area-preserving diagram, as indicated by (8). Therefore,
the solution is to draw the thermodynamic diagram’s
dry adiabats such that the increment between them
corresponds to a constant entropy difference, rather
than a constant potential temperature difference. On
such a diagram (see Fig. 2), the number of such boxes
corresponds exactly to the amount of energy enclosed.
I note that one could still label the lines (as in Fig. 2)
with their associated 6-values, instead of the corre-
sponding ¢-values, since there is one and only one value

! Strictly speaking, ¢ = ¢, In@ + ¢o, where ¢, is some constant.
For practical purposes, this constant can be set equal to zero with
no important loss of generality.
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of @ for each value of ¢ (assuming ¢, is truly constant,
of course).

Although there is nothing in this discussion which
is not well-known in principle, it appears to me that
this subtle issue is not widely-recognized, especially in
operational practice. The errors incurred are not neg-
ligible when estimating the positive and negative areas
associated with deep convection, which can cover a
significant portion of the diagram. Rather, the errors
are modest only if the area involved is of modest depth.
If one does a proper numerical integration, of course,
no error is made; a problem only arises when doing
approximate integrations by counting 67-0660 boxes.

Acknowledgments. 1 am grateful to Mr. Dan Purcell
for calling this issue to my attention and forcing me
to understand the details of its origins. The presentation
has benefited from the always-valuable suggestions of

NOTES AND CORRESPONDENCE

301

Dr. Robert Davies-Jones, while Ms. Joan Kimpel skill-
fully drafted the figures. 1 also appreciate the helpful
comments on an earlier version of the manuscript by
the Weather and Forecasting editors, Mr. Michael
Branick, and an anonymous reviewer.

REFERENCES

Beers, N. R., 1945: Meteorological thermodynamics and atmospheric
statics. Handbook of Meteorology, F. A. Berry, Jr., E. Bollay,
N. R. Beers, Eds., McGraw-Hill, 313-409.

Hess, S. L. 1959: Introduction to Theoretical Meteorology. Holt, Rine-
hart, and Winston, 362 pp.

Iribane, J. V., and W. L. Godson, 1973: Atmospheric Thermodynam-
ics. D. Reidel, 222 pp.

McGinley, J., 1986: Nowcasting mesoscale phenomena. Mesoscale
Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc.,
657-688.

Resnick, R., and D. Halliday, 1966. Physics: Part I. John Wiley and
Sons, 710 pp.



