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ABSTRACT

The spherical geometry of weather radar scans results in a data distribution wherein datapoint separation in
one coordinate direction and/or in one part of the analysis domain can differ widely from that in another.
Objective analysis of the nonuniform radar data to a uniform Cartesian grid is desirable for many diagnostic
purposes. For the benefit of the diagnostic data analyst as well as of users of these analyses, the authors evaluate
properties of techniques typically used for such objective analysis. This is done partly through theoretical
consideration of the properties of the schemes, but mostly by empirical testing. In terms of preservation of the
phase and amplitude of the input data, predictability of the degree of smoothing and filtering, and relative
insensitivity to input data unsteadiness or spatial characteristic, the isotropic Gaussian or Barnes-type weight
function with constant smoothing parameter appears to be the most desirable of the schemes considered. Mod-
ification of this scheme so that the weight function varies spatially, with the datapoint spacing, results in an
improved analysis, according to some commonly used measures of error. Interpretation of analyses based on
such a modified scheme can be affected, however. For example, analyses of unsteady input fields suffer from
a convolution of the temporal evolution of the data with spatial variations of the weight function. As a con-
sequence, unambiguous assessment of physical evolution is precluded.

1. Introduction

It is a common practice to merge radar reflectivity
factor and Doppler velocity information with data col-
lected from different platforms (e.g., a network of rain
gauges) or defined in different physical domains with
different origins (e.g., multiple Doppler radars). Some,
though not all, schemes for assimilation of radar data
into numerical models as initial and/or boundary con-
ditions require some level of objective analysis (e.g.,
Shapiro et al. 1996). With these and numerous other
applications of weather radar, it is desirable to map the
radar data from their original locations in the spherical
coordinate system of the radar to a uniform grid of a
common (typically Cartesian) coordinate system.
Smoothing and filtering of the data in some systematic
way are inherent in this process of objective analysis
(hereafter, OA).

Some attributes of radar data pose a particular chal-
lenge to certain OA schemes. For example, the spatial
distribution of data points varies continuously across
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the radar domain, and therefore there is no single Ny-
quist wavelength. Moreover, the data point separation
in the radial direction can differ by at least an order
of magnitude from the separation in the azimuthal di-
rection (or with respect to consecutive planes at con-
stant elevation angle). Also, data domain coordinate
axes typically are not aligned with the Cartesian co-
ordinate basis vectors. The foregoing attributes imply
that a meteorological phenomenon that is undersam-
pled in part of the domain may be well-sampled else-
where. Hence, the analyst is faced with the difficulty
of producing an analysis that retains to the fullest ex-
tent the input wavelengths or spatial scales that are
adequately sampled, yet prevents the retention in the
analysis of those wavelengths or scales that are under-
or marginally sampled.

During the Verification of the Origins of Rotation
in Tornadoes Experiment (VORTEX; Rasmussen et al.
1994), recently developed mobile Doppler radars, both
airborne (Jorgensen et al. 1996; Wakimoto et al. 1996)
and ground based (Wurman et al. 1997; Bluestein et
al. 1997), were used extensively for studies of tornadic
storms and attendant tornadogenesis. Of course, Dopp-
ler radars have long been employed for severe local
storms research and warning, and the problems with
radar data objective analysis (hereafter, RDOA) are not
new. However, the need to push these datasets to their
resolution limits in order to maximize detail and re-
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solve1 presumed important scales of motion has mo-
tivated us to reexamine the current ‘‘industry stan-
dards’’ of RDOA.

Despite its importance and ubiquity, RDOA has re-
ceived relatively little formal treatment other than by
Heymsfield (1976) and Mohr and Vaughn (1979), for
example. With the removal of computer resource lim-
itations faced by analysts during the era when Doppler
weather radar was in its relative infancy, it is possible
now to explore and test numerous OA techniques with
considerable thoroughness. We do so in this paper by
evaluating theoretical properties (section 2) as well as
by empirical testing using analytically defined input data
(section 3). The analytic fields have been developed to
exhibit some verisimilitude with regard to storm-scale
phenomena typically observed by Doppler radar. Since
analysis of airborne Doppler radar data collected during
VORTEX provided the initial impetus for this study,
our experiments use sampling similar to that found in
quasi-vertical scans of X-band, airborne Doppler radars
mounted in the tails of the NOAA P-3 aircrafts (see
Jorgensen et al. 1996). Results of our evaluation are
summarized in section 4.

Note that tests of statistical ‘‘optimal’’ interpolation
approaches like that taken by Heymsfield (1976) or of
variational approaches like that due to Testud and Chong
(1983) or Scialom and Lemaı̂tre (1990) are foregone
here. This allows us to focus on the commonly used
(according to the formal literature) RDOA techniques.
With these, a priori data weighting is prescribed with
the typical goal of producing smoothed and filtered anal-
yses that are suitable for diagnostic purposes. Our
RDOA ‘‘tutorial,’’ then, is written with the relatively
ubiquitous data analysts in mind, and additionally for
the users of such analyses, so that the users can make
informed interpretations (recognition of interpolation
artifices, etc.) of past and present analyses.

2. Theoretical spectral responses

In this section, we evaluate theoretical properties of
three objective analysis schemes. Specifically, we are
interested in (i) the preservation of the phase and am-
plitude of the input data and (ii) the predictability of
the smoothing and filtering properties; desirable
schemes are those that yield predictable results and that
preserve the characteristics of the input data. Tools de-
veloped in this section are used to design the empirical
tests discussed in section 3.

1 For reference herein, wavelengths of motion are said to be ‘‘re-
solved’’ if sampled by at least 6 to 10 independent radar data points,
of datapoint spacing equal to the largest dimension in the radar sample
volume (Carbone et al. 1985, and citations therein); datapoint spacing
in this largest dimension is considered to be the data resolution.

a. Barnes and Cressman weight functions

The basic process of any weighted average objective
analysis scheme can be described by

N N

f 9 5 w f w , (2.1)O Op q q q@q51 q51

where is the analyzed value at gridpoint p, f q is thef 9p
datum at datapoint q, and wq is the weight associated
with the input datum f q. Knowledge of the Fourier
transform of wq provides insight into property (i) men-
tioned above. Treatment of the Fourier transform via
integrals, as we are about to do, implies that the function
being transformed is continuous (or has, at most, a finite
number of discontinuities). Although this is not a lim-
itation when considering weight functions, which typ-
ically are specified as continuous functions, it is a dis-
tinctly unrealistic assumption when applied to the data,
which are known only at discrete points. In principle,
however, it is possible to incorporate the discreteness
of the data via Dirac Comb functions, if a more accurate
approach is desired (see Pauley and Wu 1990). We are
interested in only the essential elements and so will
ignore this complication in order to simplify the math-
ematical treatment.

We begin by recalling the Fourier transform pair,
`

2ikxW(k) 5 w(x)e dx and (2.2a)E
2`

`1
ikxw(x) 5 W(k)e dk, (2.2b)E2p

2`

where W is the Fourier transform of weight function w,
k is the wavenumber, x is some Cartesian distance in
one-dimensional (1D) space, and i 5 (21)1/2. For a two-
dimensional (2D), isotropic function w(r), Eq. (2.2a)
becomes the Hankel transform:

`

W(K ) 5 2p w(r)J (Kr)r dr, (2.3)E 0

0

where r is some radial distance, K is the radial wave-
number, and J0 is the Bessel function of the first kind,
order zero. Following Daley (1991, p. 74), a theoretical
response function D(K) can be expressed as

D(K) 5 W(K)/W(0), (2.4)

which describes the amplitude response (as a function
of wavenumber) produced by the weight function as the
data are interpolated.

Using the notation of Koch et al. (1983), the expo-
nential or Barnes (1964) distance-dependent weight
function in 2D can be expressed as

wq 5 exp(2r92/k), (2.5)

where r9 is the radial distance separating an analysis
point from a data point and k is the smoothing param-
eter. The Fourier (and Hankel) transform of the Barnes
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FIG. 1. Evaluation of Barnes weight function with nondimensional
smoothing parameter k* 5 0.5 (dashed) and of Cressman weight
function with nondimensional influence radius 5 0.9125 (solid).R*c

FIG. 2. Theoretical spectral response of Barnes weight function
with nondimensional smoothing parameter k* 5 0.5 (dashed) and of
Cressman weight function with nondimensional influence radius R*c
5 0.9125 (solid).

weight function can be obtained analytically, a conve-
nient property of Gaussian functions. Upon substituting
Eq. (2.5) into Eq. (2.3) and then integrating, Eq. (2.4)
reveals that,

D(K) 5 exp[24kK 2/p], (2.6)

or, alternatively,

D(l*) 5 exp[2k*(p/l*)2], (2.7)

where k* 5 k/L2 is the nondimensional smoothing pa-
rameter, K 5 2p/l, and l* 5 l/L is the nondimensional
wavelength; L is some length scale, which can be chosen
to be twice the mean data spacing (L 5 2D; Koch et
al. 1983).

Figure 1 shows the Barnes weight function with k*
5 0.5; the associated theoretical response is illustrated
in Fig. 2. Clearly, input waves of nondimensional length
equal to unity (or dimensional length 2D, the Nyquist
wavelength) essentially will be filtered from the anal-
ysis. Original amplitudes of longer waves will be
damped but still included in the analysis. For example,
75% of the original amplitudes of waves with length
8D will be retained (Fig. 2).

A more commonly used w in RDOA (as gauged by
frequency of references in the meteorological literature)
is that due to Cressman (1959). The Cressman weight
function can be expressed as

2 2R 2 r9c , r9 # Rc2 2w 5 R 1 r9q c (2.8)

0, r9 . R , c

where Rc is the radius of influence. Since it is not pos-

sible to find the Fourier transform of the Cressman
weight function analytically, the transform must be ob-
tained by numerical integration. We do so herein using
the extended Simpson’s rule, with a polynomial ap-
proximation of J0 (Press et al. 1986, p. 223) for the
computation of the Hankel transform.

The resulting theoretical response for the Cressman
weight function with a nondimensional influence radius
of 5 0.913, where 5 Rc/L, is also nearly zeroR* R*c c

at 2D wavelengths (Fig. 2). The Cressman response
curve is comparatively steeper. This allows a greater
percentage of the amplitudes of all wavelengths, espe-
cially the shorter wavelengths, to be retained. At wave-
lengths less than 2D, however, the response oscillates
about zero, resulting in negative ‘‘sidelobes.’’ Such os-
cillations are comparable to the so-called Gibbs phe-
nomenon associated with nonperiodic boundary values
and owe their existence to the first-order discontinuity
(i.e., a discontinuity in the first derivative) of the Cress-
man weight function at r 5 Rc (see Fig. 1).

We pause here to examine the effects of a negative
response. The RDOA process resulting in the analyzed
field f 9(x) can be thought of as a convolution of the
input field f (x) with the weight function w(x):

f 9(x) 5 f (x)∗w(x). (2.9)

By the convolution theorem, the Fourier transform of
the convolution, F9(k), is equal to the product of the
respective Fourier transforms of f (x) and w(x), that is,

F9(k) 5 F(k)W(k). (2.10)

Assume that the input data f (x) have a Fourier transform
denoted by F(k), which is in general a complex quantity:
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FIG. 3. As in Fig. 2, except with the Cressman weight function
with influence radii 5 1.0, 1.5, and 2.0.R*c

F(k) 5 FRE(k) 1 iFIM(k) 5 |F(k)|eia(k) , (2.11)

where subscripts RE and IM denote real and imaginary
parts, respectively, a(k) is the phase angle, and |F(k)| is
the nonnegative amplitude of the spectrum of the input
data. The Fourier transform the weight function also is
complex:

W(k) 5 WRE(k) 1 iWIM(k) 5 |W(k)|eic (k) , (2.12)

where c(k) and |W(k)| are the phase and nonnegative
amplitude, respectively, due to the weight function. If
response D(k) is negative, as in the example in Fig. 2,
W(k) also must be negative, implying in turn that the
phase angle c(k) must be nonzero. In this case, we have,
using Eqs. (2.11) and (2.12) in (2.10),

F9(k) 5 |F| |W|ei(a1c) , (2.13)

or in words, an analysis whose phase in spectral space
is the sum of that due to the input field and the weight
function. The weight function ideally should affect only
the amplitude of the input field, so certainly such a
phase-shifted analysis is undesirable.

Figure 3 reveals that the negative sidelobes and con-
sequential phase shifts occur at progressively larger
wavelengths as the Cressman influence radius increases.
A heavily smoothed analysis, therefore, is more apt to
suffer from phase shifts of resolvable wavelengths (L/2D
. 1), whereas a lightly smoothed analysis is more sus-
ceptible to up-scale aliasing of unresolved wavelengths
(L/2D , 1). This sort of dilemma is not uncommon in
OA, where competing effects make the choice of the
analysis parameter(s) challenging. Empirical tests pre-
sented in the next section disclose some curious prop-
erties of the Cressman response’s sidelobes.

b. Application to data of variable spacing

The analytic form of the spectral response of the
Barnes weight function makes the Barnes scheme ame-
nable to an exercise that explores the effects of non-
uniform data spacing. We apply the Barnes weight func-
tion to a hypothetical one-dimensional (or two-dimen-
sional isotropic) data distribution with a monotonically
increasing datapoint spacing. The distribution is likened
to the change in azimuthal spacing that increases line-
arly with radar range.

Recall that Eq. (2.7) provides knowledge of the fil-
tering properties of w, as used in the Barnes scheme,
for a specific nondimensional smoothing parameter k*
and nondimensional wavelength (l*). This allows the
analyst to choose, irrespective of the datapoint spacing,
those nondimensional wavelengths that will be removed
from or retained in the analysis.2

In the application of a (single pass) Barnes objective
analysis scheme suggested by Koch et al. (1983), k* is
chosen based on a desired theoretical response (as in
Fig. 2), dimensionalized with some measure of the av-
erage D, and then used to define the Barnes weight
function [Eq. (2.5)]. Subsequently, the data are inter-
polated irrespective of any variations in D that occur
throughout the domain. Such an approach becomes com-
plicated when radar data are involved: ‘‘average data-
point spacing’’ is not meaningful since the azimuthal
spacing (Daz) has a systematic increase with range. In
such cases, we recommend that k* be dimensionalized
by the maximum spacing of data affecting the analysis
domain. In doing so, we are expressing a ‘‘conserva-
tive’’ viewpoint: some signal may be lost through
smoothing in order to avoid undersmoothing the data
in regions of the most coarse datapoint spacing.

To explore the implications of this recommendation,
consider a smoothing parameter k* 5 0.5 dimension-
alized by the maximum Daz. The azimuthal data spacing
varies with range according to

Daz ø RDu, (2.14)

where R is radar range, and Du is the (angular) azimuthal
data sampling interval.3 The azimuthal sampling inter-
val is a function of the antenna rotation rate, pulse rep-
etition frequency, and number of signal pulses, and is
independent of the half-power beamwidth (e.g., Brown
and Wood 1998). The nominal value of Du for the
Weather Surveillance Radar-1988 Doppler (WSR-88D)
is 18, and for recent airborne Doppler radar applications,

2 Note that this is valid strictly for isotropic weighting of a con-
tinuous data distribution, as mentioned earlier. Equation (2.7) will
only approximate the spectral response when applied to discrete, and
perhaps nonuniformly, spaced data. For a discussion of the spectral
response of a weighted discrete, uniform, data distribution, the reader
is referred to Pauley and Wu (1990).

3 For convenience, values of Du are given in degrees. When used
in Eq. (2.14), however, these values are converted to radians.
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FIG. 4. Theoretical response for Barnes weight function with con-
stant smoothing parameter k 5 2.987 km2, as a function of the local
data spacing Daz. Responses D for dimensional scales are indicated
by the solid curves and are constant with respect to changes in Daz

(which is a function of the radar range). Responses D for locally
nondimensionalized scales (dashed curves) are recomputed for each
Daz value by using in Eq. (2.7) k* 5 k/[(2Daz)2], where k 5 2.987
km2.

FIG. 5. Theoretical response for Barnes weight function with non-
dimensional smoothing parameter k* 5 0.5, as a function of the local
data spacing Daz. Responses D for dimensional scales (solid curves)
are recomputed locally using k* 5 0.5, Daz, and k 5 k*[(2Daz)2] in
Eq. (2.7), and changes with respect to changes in Daz. Responses D
for locally nondimensionalized scales (dashed curves) are constant
with respect to changes in Daz.

18 , Du , 28 (e.g., Jorgensen et al. 1996; Hildebrand
et al. 1996). To exaggerate somewhat the range-varying
azimuthal datapoint spacing, we assign Du 5 28, and
assume that the maximum range of data points affecting
the hypothetical analysis is R 5 35 km (as typical during
VORTEX). Using Eq. (2.14), we have max(Daz 5 1.22
km, from which we compute k 5 k*[ ] 5 2.9872(2D )az max

km2.
Because k is constant, the spectral response of a given

dimensional scale or wavelength is independent of radar
range and hence datapoint spacing (Fig. 4). It follows
that the RDOA scheme damps or removes dimensional
scales regardless of how they are resolved. Using k 5
2.987 km2, we can recompute a ‘‘local’’ D with k* 5
k/[(2Daz)2], the local data spacing Daz (which is a func-
tion of the radar range), and Eq. (2.7). This results in
theoretical responses for locally nondimensionalized
wavelengths l* that change with respect to changes in
Daz (Fig. 4).

The extent to which physical scales are sampled by
the local data resolution is also illustrated in Fig. 4. For
example, at a range of 5 km (where the local data res-
olution is 0.2 km), a 4-km wavelength is sampled by
21 data points (i.e., represented as a ‘‘20D’’ wave, with
l* 5 10). At a range of ;30 km (where the local data
resolution is 1.0 km), a 4-km wavelength is sampled by
five data points (i.e., represented as a ‘‘4D’’ wave, with
l* 5 2), hence, it is only marginally resolved. At all
ranges, only 19% of the amplitude of input waves of
4-km length are admitted into the analysis. This exercise
exemplifies the ‘‘traditional’’ application of a distant-
dependent weighted-averaging (DDWA) scheme in

which the free parameter in the weight function (e.g.,
Cressman influence radius or the Barnes smoothing pa-
rameter) is constant.

c. A modified Barnes weight function

It has been suggested that the free parameter and thus
the weight function be allowed to adjust in some way
to the local data spacing [e.g., Nelson 1980 (Cressman);
Askelson 1996 (Barnes)]. The obvious advantage of this
approach is that physical scales are filtered and damped
according to how well they are sampled locally. In radar
data, this allows a certain physical scale to be damped
only slightly when it is well resolved near the radar, yet
filtered heavily when it is poorly resolved at a large
distance from the radar.

Continuing our simple exercise, consider a ‘‘modi-
fied’’ Barnes OA weight function, wq 5 wq(r9, k*, D),
in which the smoothing parameter is redefined every-
where in the analysis domain according to the local data
spacing:

k 5 k*(2D)2, (2.15)

where k* is fixed and chosen a priori. In this case,
nondimensional wavelengths have spectral responses
that do not change with data resolution (Fig. 5). A 2-km
wavelength is treated as a ‘‘4D’’ (l* 5 2) wave at a
range of 15 km (0.52-km data spacing), and conse-
quently damped heavily. However, because it is sampled
as a ‘‘12D’’ (l* 5 6) wave at a range of 5 km (0.17-
km data spacing), a 2-km wavelength observed at this
range retains most of its amplitude in the analysis. As
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is shown in the following section, this approach may
not be well suited for all applications.

3. Empirical testing

We now employ an empirical methodology to eval-
uate the results from different OA schemes. Continuous,
error-free, analytic fields are sampled at discrete data
points defined in polar coordinates (R, u), simulating
constant-elevation-angle radar scans of some meteoro-
logical scalar. The analytic fields have different input
wavelengths and are steady state in all but two sets of
experiments. Discretely sampled ‘‘data’’ are mapped via
OA onto a uniform Cartesian grid, and the subsequent
analysis is compared to the analytic field. Empirical tests
involve DDWA schemes with a Barnes weight function
(modified and ‘‘traditional’’) and a Cressman weight
function,4 bilinear interpolation (also a DDWA scheme),
and assignment of a gridpoint value using the spatially
closest datapoint value (henceforth, ‘‘nearest neighbor’’
analysis). Most of these have been employed by radar
data diagnosticians [recently, e.g., by Trapp 1999
(Barnes); Wakimoto and Liu 1998 (Cressman); Mohr
and Vaughn 1979 (bilinear interpolation)].

With admitted loss of generality to multidimensional
OA except in limited circumstances, our tests are con-
fined to two dimensions. This approach allows us to
perform a suite of idealizations economically, and in-
terrogate them without the complications of a third di-
mension. The realm of issues related to OA with di-
mensionality higher than two is beyond the scope of
this paper. Nevertheless, results presented here reveal
basic characteristics of schemes that should be known
prior to a scheme’s application to more than two di-
mensions.

a. Steady-state analytic fields

As in the one-dimensional exercise above, azimuthal
data spacing varies with range according to Daz ø RDu.
Our hypothetical radar has an azimuthal sampling in-
terval of Du 5 28 and a range-gate spacing DR 5 0.075
km. We assume that the radar ‘‘scans’’ at an elevation
angle of 08 (or, alternatively, consider a single, quasi-
vertical scan or ‘‘sweep’’ of an airborne Doppler radar).
These radar attributes dictate the discretization of the
continuous input field:

2p 2p
f (x, y) 5 A cos kx sin ly , (3.1)1 2 1 2L Lx y

4 A ‘‘modified Cressman’’ scheme, analogous in design to the mod-
ified Barnes scheme discussed in section 2c, was developed and tested
as well. The results of empirical tests applied to the modified Cress-
man scheme paralleled those of the modified Barnes scheme in terms
of rms error (though slightly less in the former) and inherent short-
comings (susceptibility to interpretation problems, etc.). For economy
of presentation, a discussion of such results is omitted here.

where x 5 R sinu 2 xR; y 5 R cosu 2 yR; A is the
constant amplitude set equal to 10; Lx 5 Ly 5 30 km
are the fundamental wavelengths in the x and y direc-
tions, respectively; and k (l) is a domain wavenumber
index in the x (y) direction. This analytic field represents
a checkerboard pattern of circular maxima and minima.
Note that the radar is arbitrarily positioned5 at xR, yR 5
15, 25 km with respect to a 0 # x, y # 30 km Cartesian
analysis domain of dx 5 dy 5 0.5-km gridpoint spacing.
Given this particular domain size and radar position, the
maximum datapoint spacing (based on the maximum
range affecting the analysis) is max(Daz, DR) 5 Dmax 5
1.33 km.

In the first set of tests, indices k and l are varied over
a wide range of values to illustrate how each scheme
responds to different input wavelengths. The resultant
data fields are interpolated to the Cartesian grid using
k* 5 0.5 in the traditional and modified Barnes weight
functions and 5 0.913 in the Cressman weight func-R*c
tion [note that both of these parameters yield a Nyquist
response D(l* 5 1) 5 0.007]6; unless otherwise indi-
cated, weighting is applied isotropically. We adhere to
our earlier recommendation that for traditional Barnes
(Cressman) OA applications, k*( ) should be dimen-R*c
sionalized by the maximum datapoint spacing Dmax 5
1.33 km, thereby yielding in this case k 5 3.538 km2

(Rc 5 2.427 km). Again, the smoothing parameter in
the modified Barnes weight function is defined anew
for each datum via k 5 k*(2D)2, where D is evaluated
locally as D 5 max(Daz, DR). For comparison, the near-
est-neighbor and bilinear interpolation methods also are
employed.

For each wavenumber examined, root-mean-square
(rms) differences between the objectively analyzed
fields and discretized analytic function are lower in the
modified Barnes analyses than in the traditional Barnes
and Cressman analyses (Fig. 6). Mean absolute errors
(MAEs, not shown) are consistent with this result. Ob-
jective analysis by the nearest-neighbor and bilinear in-
terpolation methods yields rms differences that are low-
er still. This measure of error is misleading, however,
since the nearest-neighbor and bilinear interpolation an-
alyses are clearly inferior. As depicted by difference
fields,

d(x, y) 5 f (x, y)discrete 2 f (x, y)analyzed, (3.2)

5 The radar origin is located outside the analysis domain to simulate
a typical analysis situation using airborne Doppler radar data collected
during VORTEX.

6 We note that the Barnes smoothing parameter k* 5 0.5 and Cress-
man radius of influence 5 0.913 are chosen because of their veryR*c
low theoretical response at 2D. It is possible with these idealized
tests, however, to find (typically smaller) k* and that result inR*c
less analysis error for a given input field. Use of smaller k* and

in real data OA applications allow for the possibility that mar-R*c
ginally or underresolved wavelengths will adversely affect the anal-
ysis.
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FIG. 6. Root-mean-square (rms) differences between the analytic
function and objectively analyzed fields produced by means of the
Barnes, modified Barnes, Cressman, bilinear, and nearest-neighbor
OA schemes. The abscissa is the wavenumber index k (51) used in
Eq. (3.1) to define the input field.

the nearest-neighbor and bilinear schemes generate
‘‘noise,’’ or smaller-scale waves not present in the input
data (see Figs. 7e–f); this is a clearly undesirable char-
acteristic of these two schemes. The difference fields
also show the range dependency inherent in the modified
Barnes scheme: amplitude errors [and hence d(x, y)]
increase with increasing range and datapoint spacing.
As illustrated more dramatically in the next section, the
potential is high for misinterpreting the range-dependent
analysis of the range-independent input field. Note that
part of the analysis error depicted in Figs. 6 and 7 can
be explained by the range-dependent sampling and dis-
cretization of the input field, rather than by shortcomings
of a particular OA scheme. In other words, the analytic
function is discretized more coarsely (gradients and am-
plitudes less resolved) as range, and thus azimuthal
spacing, increases.

Discrete Fourier transforms are used to examine the
analyses as represented in vector wavenumber (k, l )
space. Two-dimensional spectra F(k, l ) are deter-
mined following Errico (1985).7 For convenience of
presentation, we compute 1D spectra I(K ) by sum-
ming the 2D spectra within discrete annuli with cen-
tral radii K 5 (k 2 1 l 2 )1/2 [see Errico 1985, Eq. (5)].
The 1D spectra then are normalized by the maximum
of I(K ) calculated from f (x, y)analyzed , to approximate
a response function.

Consider input data with k 5 l 5 2 and k 5 l 5 4,
corresponding to K 5 3 and K 5 6, respectively. A peak
in the normalized 1D spectra at the input wavenumber

7 Since our application involves periodic functions (analyzed onto
a regularly spaced grid), removal of trends as in Errico (1985) is not
required.

is indicated for analyses produced by each OA scheme
(Fig. 8). Consistent with the theoretical response curves
in Fig. 2, input waves of smaller length are damped
more heavily, particularly with the Barnes weight with
k 5 3.538 km2. In terms of maintaining the spectral
fidelity of the input data, the nearest-neighbor and bi-
linear schemes are markedly inferior as mentioned
above. Indeed, a spectral broadening is associated with
these schemes, and, curiously, with the modified Barnes
scheme as well; we have no ready explanation for the
spectral broadening associated with the latter.

We next test the sensitivity of the OA techniques to
less-idealized, asymmetric input data. These data are
defined using Eq. (3.1) for a range of wavenumber index
aspect ratios (5k/l); a checkerboard pattern of elliptical
maxima and minima results (Fig. 9). Figure 10 depicts
the rms differences between the asymmetric, analytic
functions and corresponding objectively analyzed fields.
A technique that is insensitive to asymmetries (like one
with fixed, isotropic Barnes or Cressman weighting)
yields rms differences that are symmetric about k/l 5
1 and are the same regardless if the input ellipses have
major axes parallel to the x axis or parallel to the y axis.
The remaining schemes, which exploit the greater res-
olution in the radial direction, are more successful (have
less error) in the cases k/l , 1 wherein sharp gradients
are directed parallel to many radials. In cases where k/l
. 1, these same schemes produce poor analyses because
of their inability to maintain the sharp gradients directed
normal to many radials (e.g., see Fig. 9).

As shown in the previous section, the theoretical re-
sponse due to the Cressman weight function has neg-
ative sidelobes which, according to theory based on
continuous data distributions, should result in a shift of
the phase of the input data [see Eq. (2.13)]. We now
explore this theoretical effect using additional experi-
ments with input data described by Eq. (3.1).

Analyses are generated using the Cressman weight
function with nondimensional influence radii 5R*c
0.913, 1.0, 1.5, and 2.0. Once dimensionalized by 2Dmax

5 2.66 km, these influence radii become Rc 5 2.43,
2.66, 3.99, and 5.32 km. Note that each influence radius
is associated with a theoretical response that first be-
comes zero at some wavelength l0 $ 2D, yet may os-
cillate about zero at wavelengths l , l0 (see Figs. 2
and 3). An input field with k 5 l 5 12 in Eq. (3.1) is
used; this yields input waves of length 2.5 km, which
approximates 2Dmax.

Figure 11 summarizes experiments with three Cress-
man radii of influence and discloses an unexpected prop-
erty of the Cressman weight function: wavelengths that
are removed when a relatively narrow weight function
(with Rc 5 2.43 km) is used, are ‘‘readmitted’’ into the
analysis when a slightly broader weight function (with
Rc 5 2.66 km) is applied. This presumably is a mani-
festation of the response sidelobes and appears not to
be a function of their sign. The amplitudes of the re-
admitted waves are small in these examples, ;2 orders
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FIG. 7. (a) Discrete evaluation of Eq. (3.1) for the case k 5 l 5 2. Difference fields, d(x, y) 5 f (x, y)discrete 2 f (x, y)analyzed,
between the discretized, exact function and analyses produced by the (b) Barnes, (c) modified Barnes, (d) Cressman,
(e) bilinear, and (f ) nearest-neighbor OA techniques. In this and all other contour plots, contour interval is given below
each plot, solid (dashed) contours indicate positive (negative) values, and the zero contour is omitted.
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FIG. 8. Normalized 1D spectra as a function of radial wavenumber
K, for each analysis, given input data defined by (a) k 5 l 5 2 and
(b) k 5 l 5 4 in Eq. (3.1).

of magnitude less than the maximum amplitude of the
input field. Note that the analyzed field in the domain
corners can be attributed to aliasing.

Difference fields (not shown) fail to reveal any dis-
cernible phase differences between the input field and
analyses. In light of the work of Pauley and Wu (1990),
it is plausible that the actual response is sufficiently
different from the continuous, theoretical response; thus,
the negative sidelobes and theorized phase shift (cf. sec-
tion 2a) occur at a wavelength(s) not represented in the
input field used in the Fig. 11 experiments. Full explo-
ration of this artifact of the Cressman weight function
is beyond the scope of this paper, but may be the subject
of forthcoming research.

b. Unsteady analytic fields

The following series of experiments is used to ex-
amine the behavior of certain OA schemes when applied
to an unsteady problem. We treat the unsteady field as
an isolated phenomenon (e.g., a thunderstorm) that
moves through the domain of nonuniform datapoint
spacing. Since radar data analysts often are faced with
situations of storms or storm complexes moving through
the domain, these experiments are particularly relevant
and show more dramatically the potential pitfalls of us-
ing RDOA schemes with spatially varying weight func-
tions.

Consider the positive function (henceforth, ‘‘storm’’):

B cos(2pr9), r9 , 1/4
g(x, y, t) 5 (3.3)50, r9 $ 1/4,

where

1/22 2m n
2 2r9 5 [x 2 (x̂ 1 C t)] 1 [y 2 ( ŷ 1 C t)] ,x y51 2 1 2 6L L

B 5 10 is the constant amplitude, L 5 Lx 5 Ly 5 30
km as in Eq. (3.1), m and n are parameters that determine
the ellipticity of the storm, x̂ and ŷ (5L/2, L/4, respec-
tively) are the initial coordinates of the storm, and t is
time (310 min). The components of the storm motion
Cx 5 0, Cy 5 5 (31 km per 10 min) are defined so that
the storm moves outward radially from the radar. Di-
mensional values of t, Cx, and Cy are irrelevant for these
idealizations but have been supplied for completeness.
Our objective is to determine how well the analysis
preserves storm amplitude. Thus, we choose Cy and
evaluate Eq. (3.3) at specific times during the interval
0 # t # 3 such that maximum of the discretized g(x, y, t)
coincides with a data point. To make such collocation
more convenient, we redefine the range-gate spacing of
our radar to be DR 5 0.1 km. Since the storm moves
along the radial at 08 azimuth, sampling of the maximum
amplitude is guaranteed, therefore reducing the sam-
pling bias in the error measures.

We limit our discussion to the analyses produced by
the Barnes (with k 5 2.99 km2, based on a maximum
range of 35 km and thus Dmax 5 1.22 km) and modified
Barnes (with k* 5 0.5) OA schemes.8 Differences in
maximum amplitude between the exact, discretized, and
objectively analyzed storms are displayed in Fig. 12
over the time interval 0 # t # 3 for various values of
m (5n) in Eq. (3.3). Examples of the fields themselves
are presented in Fig. 13. With the ‘‘unmodified’’ Barnes

8 Owing to its constant radius of influence, our expectation is that
the Cressman scheme will behave in a manner similar to that of the
traditional Barnes scheme, when applied to this unsteady problem.
The design of the experiments does not allow much useful information
to be revealed about the behavior of the bilinear interpolation and
nearest-neighbor techniques.
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FIG. 9. As in Fig. 7, except for the asymmetric input data case with (k 5 4)/(l 5 1) 5 4 in Eq. (3.1).
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FIG. 10. As in Fig. 6, except with input data defined by Eq. (3.1)
for a range of wavenumber index aspect ratio (5k/l).

FIG. 11. (a) Discrete evaluation of Eq. (3.1) for the case k 5 l 5 12. Corresponding objective analyses produced by the Cressman tech-
nique with (b) Rc 5 2.43, (c) Rc 5 2.66, and (d) Rc 5 3.99 km.

scheme, the amplitude difference or error (as well as
the rms difference and MAE) remains relatively con-
stant with time and therefore with variations in azi-
muthal datapoint spacing (Fig. 12a). This is a predict-
able result in light of the simple exercise discussed in
section 2b. In contrast, use of the modified Barnes
scheme results in amplitude errors that increase nearly
monotonically with time (and implicitly, with azimuthal
datapoint spacing); the rate of error increase is depen-
dent on parameters m and n, the magnitude of which
are inversely proportional to the physical scale of the
storm (Fig. 12b).

An unsteady, ellipsoidal storm (henceforth, ‘‘line’’)
is created when m 5 0.5 and n 5 5 in Eq. (3.3). Figure
14 depicts the objective analyses of the line at two times
during the interval 0 # t # 3. As in Fig. 13, the damped,
yet temporally consistent line due to the traditional
Barnes weighting contrasts the more globally accurate,
yet temporally varying (in amplitude and now shape)
line due to the modified Barnes weighting.

These artifacts of the modified Barnes weight func-
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FIG. 12. Error in maximum amplitude in analyses produced by the
(a) Barnes and (b) modified Barnes OA techniques, as a function of
nondimensional time and input parameter m (5n) in Eq. (3.3).

FIG. 13. (a) Discrete evaluation of Eq. (3.3) for the case m 5 n 5 2, at times t 5 0 and t 5 3, and corresponding objective analyses
produced by the (b) Barnes and (c) modified Barnes techniques.

tion have far-reaching implications. In real-data appli-
cations, the spatial variations of this weight function
will be convolved with the temporal evolution of the
analyzed field so that unambiguous assessment of time
tendencies in the analyzed field is not possible. This

means that subsequent diagnoses and prognoses based
on the analysis will be muddled with this artifact, and
has special relevance when gridded radar data are used
as initial and/or boundary conditions in mesoscale pre-
diction models. As just shown, a convective storm or
line maintaining its intensity while moving away from
the radar appears in the analyses to be decaying. This
incorrect deduction invalidates the predicted future state
of the storm or line. Hence, the penalty for relatively
low global error is the potential for misinterpretations
of the analysis by its users.

c. Anisotropic weighting

Datapoint spacing that is vastly different along one
coordinate direction (spherical or Cartesian) compared
to that along another has been the justification of some
analysts to employ DDWA that is dependent on coor-
dinate directions. Armed with a so-called anisotropic
weight function, the analyst attempts to retain the great-
est ‘‘detail’’ in a given direction, in a manner that is
independent from that in another direction.

An anisotropic weight function based on the Barnes
scheme in 2D can be expressed as

2 22x9 y9
w 5 exp 2 , (3.4)q 1 2k kx y

where, in the respective x and y directions, x9 and y9
are Cartesian distances separating an analysis point from
a data point, and kx and ky are the smoothing parameters.
When kx 5 ky, Eq. (3.4) reduces to Eq. (2.5). Alter-
natively, the 2D weight function can be defined with
respect to radial and azimuthal gridpoint–datapoint sep-
aration distances R9 and u9:

2 22R9 u9
w 5 exp 2 , (3.5)q 1 2k kR u

where kR and ku are the smoothing parameters in the
radial and azimuthal directions, respectively. Equation



FEBRUARY 2000 117T R A P P A N D D O S W E L L

FIG. 14. As in Fig. 13, except for the case m 5 0.5, n 5 5.

(3.5) follows the 3D formulation of Askelson (1996).
Analogous expressions for the Cressman weight func-
tion follow from Eq. (2.8).

Our empirical methodology can be used to examine
how anisotropic weight functions treat the input data.
Consider the data generated by Eq. (3.1) with k 5 l 5
2, as in experiments presented in section 3a. Objective
analyses are obtained using weight function (3.4) with
smoothing parameters kx 5 3.54 km2, ky 5 0.354 km2

(Fig. 15a), and kx 5 0.354 km2, ky 5 3.54 km2 (Fig.
15b); weight function (3.5) is applied with kR 5 2.25
3 1022 km2 and ku 5 4.87 3 1023 (Fig. 15c). The
values of kx and ky are computed from Eq. (2.15) using
either k* 5 0.5 or k* 5 0.05 with D 5 1.33 km; values
of kR and ku are computed from Eq. (2.15) using k* 5
1.0 with DR 5 0.075 km and Du 5 28, respectively.
Our respective choices for kx, ky, kR, and ku result in
a highly elliptical weight function, purposely exagger-
ated for the sake of illustration.

Standard measures of error (such as rms or MAE)
suggest that these analyses are more accurate than
those produced with an isotropic weight function (with
k 5 3.54 km 2), owing to reduced smoothing in one
direction (see also Fig. 7). Figure 15b results from
values of kx and ky that clearly are less suited to the
range-varying datapoint spacing than are the values
used to produce Fig. 15a. An implicit, range-dependent
smoothing property of weight function (3.5) is depicted
in the difference field in Fig. 15c. At distant ranges
from the radar, for example, the azimuthal changes u9
are smaller over some x distance than are the u9 at near
ranges over the same x distance due to the polar ge-
ometry of the data. Because the weight function is
inversely proportional to u9, w increases with range.

Figure 15c illustrates an undesirable property of an-
isotropic weight functions that is most evident when the
input data contain large gradients. We illustrate this with
the analytic field given by

C, r 0 , 7.5
 10 2 r 0
h(r 0) 5 C , 7.5 # r 0 # 10 (3.6)

10 2 7.5
0, r 0 . 10,

where

r 0 5 [(x 2 x0)2 1 (y 2 y0)2]1/2,

C 5 10 is the constant amplitude, and x0 5 y0 5 L/2
define the center of h. This function describes a circular
region with a large gradient, which might be likened to
the surface temperature distribution within a radially
symmetric, thunderstorm outflow gust front (henceforth,
‘‘front’’; see Fig. 16a).

Anisotropic smoothing owing to weight functions
(3.4) and (3.5) (with kx, ky, kR, and ku as in Fig. 15)
results in a nonuniform distortion of the circular front
(Fig. 16). Other experiments (not shown) indicate that
the degree of distortion increases with the anisotropy,
which also is exaggerated in these experiments for the
sake of illustration. The ‘‘character’’ of the distortion
depends on the alignment of the local gradient vector
with the major axis of the essentially elliptical weight
function (see Figs. 16b,c). Although anisotropic weight-
ing allows for relatively greater accuracy (in terms of
standard measures), qualitatively it also may give rise
to unintended interpretations about the physics of the
analyzed field. In Fig. 16, for example, one might de-
duce incorrectly that portions of the front have weak-
ened and become more diffuse. More serious misdi-
agnoses and prognostic errors may arise if anisotropic
weighting is used to analyze an unsteady front under-
going a configuration change. We note that there may
be some (perhaps 3D) applications, unlike our examples,
in which anisotropic weighting might still be desirable.
This deserves further study.
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FIG. 15. As in Fig. 7, except for difference fields between the discretized, exact function and analyses produced using the (a) anisotropic
Barnes weight function (3.4) with kx 5 3.54 km2 and ky 5 0.354 km2, (b) anisotropic Barnes weight function (3.4) with kx 5 0.354 km2

and ky 5 3.54 km2, and (c) anisotropic Barnes weight function (3.5) with kR 5 2.25 3 1022 km2, ku 5 4.87 3 1023.

FIG. 16. (a) Discrete evaluation of Eq. (3.6), and corresponding objective analyses produced
by anisotropic Barnes weight functions with smoothing parameter values of (b) kx 5 3.54 km2,
ky 5 0.354 km2 in Eq. (3.4), (c) kx 5 0.354 km2, ky 5 3.54 km2 in Eq. (3.4), and (d) kR 5 2.25
3 1022 km2, ku 5 4.87 3 1023 in Eq. (3.5).
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4. Summary and discussion

Results from the preceding examination of radar data
objective analysis (RDOA) techniques can be summa-
rized as follows.

1) Isotropic, distant-dependent weighted-averaging
(DDWA) schemes with Cressman or Barnes weight
functions that have constant ‘‘shape’’ parameters
(i.e., Barnes smoothing parameter or Cressman ra-
dius of influence) filter or damp amplitudes of di-
mensional wavelengths irrespective of the datapoint
spacing. This implies loss of detail in the analysis
where a wave or feature is well sampled, but also a
consistency in how it is treated throughout the anal-
ysis domain.

2) Isotropic, DDWA schemes with parameters that vary
with the local datapoint spacing treat nondimension-
al wavelengths the same throughout the analysis do-
main, but filter/smooth amplitudes of locally dimen-
sionalized wavelengths based on the local datapoint
spacing. Hence, waves that are well resolved within
the varying datapoint distribution are well-retained
in the analysis. One consequence of such a spatially
varying weight function is that the associated spatial
variation in amplitude error may be misinterpreted
as some physical change in the analyzed field. In
particular, analyses of unsteady meteorological fields
suffer from a convolution of the evolution of the
input field with spatial variations of the weight func-
tion. Subsequent diagnoses and prognoses based on
these analyses will be muddled with this artifact.

3) The Cressman weight function generates negative
values of response, or ‘‘sidelobes,’’ in the spectral
domain. According to theory based on continuous
data distributions, these lead to an analysis whose
phase in the short wavelength part of the spectral
domain is shifted with respect to that of the input
field. The sidelobes occur at progressively larger
wavelengths as the Cressman influence radius in-
creases. As a consequence, wavelengths that are fil-
tered with a relatively narrow weight function can
be readmitted into the analysis when a broader
weight function is applied.

4) DDWA schemes with anisotropic weights can distort
the shapes of the input field. The associated analyses
are sensitive to the orientation of the input field with
respect to the orientation of the weight function it-
self. This artifact also complicates subsequent di-
agnoses and prognoses.

5) Bilinear and ‘‘nearest-neighbor’’ interpolation
schemes generate wavelengths not present in the ini-
tial data. Analyses via these schemes [as well as the
DDWA scheme in (2)] are inherently sensitive to
characteristics of the input field (e.g., orientation of
the phenomenon) with respect to the datapoint dis-
tribution.

In terms of preservation of the phase and amplitude

of the input data, predictability of the resultant smooth-
ing and filtering, and relative insensitivity to input data
unsteadiness or spatial characteristic, the isotropic
Barnes weight function with constant smoothing param-
eter appears to be the most desirable of the schemes
considered. Recalling that there is no single Nyquist
wavelength in radar data, we recommend that the
smoothing parameter be defined with respect to the max-
imum datapoint spacing affecting the analysis domain.
This ‘‘conservative’’ viewpoint avoids the potential for
undersmoothing in regions of the most coarse data res-
olution. The choice of nondimensional smoothing pa-
rameter k*, hence, the degree of smoothing near the
limits of resolution is, as always, related to the philos-
ophy and intentions of the analyst.

We note that OA is not a data panacea. This is ex-
pressed by Mohr and Vaughn (1979) who, in a discus-
sion of artifacts due to inadequate resolution, state that
‘‘More elaborate interpolation schemes were examined
and as the degree of sophistication increased the artifacts
became smoother, but they never disappeared.’’ Indeed,
there can be no substitute for data resolution.

Several issues pertinent to objective analysis meth-
odology were not treated here. The choice of analysis
domain size for a given radar data domain size, and the
ramifications this has on the analysis at the domain
boundary is one such issue (see Achtemeier 1986; Pau-
ley 1990). Another is the choice of gridpoint spacing.
These merit further study.

A closing remark is appropriate. Our conclusions
above should not be interpreted to mean that the only
‘‘correct’’ RDOA scheme is the one that employs an
isotropic Barnes-type weight function with a constant
smoothing parameter. The choices of the 1) OA scheme
and 2) its coefficients or parameters are problem-spe-
cific. It is the responsibility of the analyst to understand
the interaction between the data and the various OA
schemes and make an informed decision on which tech-
nique is most appropriate for the intended purpose of
the analysis.
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