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ABSTRACT

Tornadoes often strike as isolated events, but many occur as part of a major outbreak of tornadoes.

Nontornadic outbreaks of severe convective storms are more common across the United States but pose

different threats than do those associated with a tornado outbreak. The main goal of this work is to distinguish

between significant instances of these outbreak types objectively by using statistical modeling techniques on

numerical weather prediction output initialized with synoptic-scale data. The synoptic-scale structure con-

tains information that can be utilized to discriminate between the two types of severe weather outbreaks

through statistical methods. The Weather Research and Forecast model (WRF) is initialized with synoptic-

scale input data (the NCEP–NCAR reanalysis dataset) on a set of 50 significant tornado outbreaks and 50

nontornadic severe weather outbreaks. Output from the WRF at 18-km grid spacing is used in the objective

classification. Individual severe weather parameters forecast by the model near the time of the outbreak are

analyzed from simulations initialized at 24, 48, and 72 h prior to the outbreak. An initial candidate set of 15

variables expected to be related to severe storms is reduced to a set of 6 or 7, depending on lead time, that

possess the greatest classification capability through permutation testing. These variables serve as inputs into

two statistical methods, support vector machines and logistic regression, to classify outbreak type. Each

technique is assessed based on bootstrap confidence limits of contingency statistics. An additional backward

selection of the reduced variable set is conducted to determine which variable combination provides the op-

timal contingency statistics. Results for the contingency statistics regarding the verification of discrimination

capability are best at 24 h; at 48 h, modest degradation is present. By 72 h, the contingency statistics decline by

up to 15%. Overall, results are encouraging, with probability of detection values often exceeding 0.8 and

Heidke skill scores in excess of 0.7 at 24-h lead time.

1. Introduction

Major tornado outbreaks are of great concern to those

living in areas prone to severe weather and to those who

forecast the events. Such outbreaks typically are associ-

ated with strong synoptic-scale weather systems, but it

can be difficult to anticipate the degree of tornadic ac-

tivity with such systems 24 h or more in advance. Gen-

erally, more than 10 major tornado outbreaks affect the

United States each year (Doswell et al. 2006, hereinafter

D06). Given that an outbreak of severe weather is likely

to occur with a particular synoptic-scale system, prior

knowledge of impending major tornado outbreaks as

opposed to primarily nontornadic events would be ideal,

and this study presents an objective method for this

discrimination. It is hypothesized that the antecedent

synoptic signal possesses information that can be utilized

in this outbreak-type classification, so purely synoptic-

scale data are used with the methods presented.

One of the first studies of a tornado outbreak (TO) was

conducted by Carr (1952), who considered a TO that

affected the lower Mississippi Valley and the Tennessee

Valley on 21–22 March 1952. Other studies of indi-

vidual TOs included Fujita (1974), who analyzed the

well-known 3 April 1974 ‘‘super outbreak,’’ and more

recently, Roebber et al. (2002), who examined the fa-

mous 3 May 1999 outbreak. TO classification was ini-

tially conducted by Pautz (1969), who defined outbreaks
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as small, medium, or large. Galway (1975) used the Pautz

(1969) TO classes as a baseline for classifying outbreak

type based on tornado deaths by state. Galway (1977)

classified TOs into three main categories: a local out-

break (radius less than 1000 mi.), a progressive outbreak

(advances from west to east with time), and a line out-

break (tornadic thunderstorms form along a narrow

corridor). Grazulis (1993) categorized TOs as groups of

6 or more tornadoes within a single synoptic system.

Nontornadic severe weather outbreaks (NTOs), per se,

have not been studied, although Kelly et al. (1978) and

Doswell et al. (2005) produced climatologies of non-

tornadic severe weather events.

The work by D06 is the most recent outbreak classi-

fication study analyzing TOs and NTOs. D06 avoided

any arbitrary definition for what constitutes an outbreak

but rather produced a ranking of the different outbreak

cases based on the Glickman (2000) definition for a TO:

namely, ‘‘multiple tornado occurrences within a single

synoptic-scale system.’’ Outbreaks are limited to a single

day (1200 through 1159 UTC), although several such

days could occur in succession as a synoptic-scale system

traverses the United States. The outbreak occurrence

data are from the SPC database described in detail by

Schaefer and Edwards (1999). Several variables are used

for the ranking of TO types, including the destruction

potential index (DPI; Thompson and Vescio 1998), the

number of deaths, etc. A weighted combination of these

variables yielded the O index, which is used to rank the

TO events.

D06 ranked NTOs as well, based on a different set of

variables. An event was classified as an NTO if it had 6 or

fewer tornado reports. Variables selected included the

number of significant wind reports ($65 kt or 33 m s21),

the number of significant hail reports (diameters $ 2 in.

or 5 cm), the number of tornadoes, the number of severe

wind reports ($50 kt or 25 m s21), and the number of

severe hail reports (diameters . 3/4 in. or 2 cm). A sim-

ilar weighted combination of these variables, denoted in

D06 as the S index, allowed for the ranking of the NTO

events considered. The D06 outbreak study is the base-

line for the present work, and the top 50 ranked TOs and

NTOs from the D06 study are evaluated using the sta-

tistical methodology developed in this study.

These top 50 events are simulated with the Weather

and Research Forecast model (WRF; Skamarock et al.

2005) initialized with synoptic-scale input. To determine

the WRF’s capability to classify outbreak type correctly,

objective statistical and learning methods are employed

on the WRF output. Statistical techniques are commonly

utilized in meteorological studies (i.e., Reap and Foster

1979; Michaels and Gerzoff 1984; Billet et al. 1997;

Marzban et al. 1999; Schmeits et al. 2005). Learning

methods, such as support vector machines (SVMs; Haykin

1999), are not so widely used in meteorology but have been

applied to previous severe weather studies. For exam-

ple, Trafalis et al. (2005, hereinafter T05) applied SVMs

to improve the mesoscale detection algorithm (MDA)

on the Weather Surveillance Radar-1988 Doppler (WSR-

88D). T05 expanded the previous work by Marzban and

Stumpf (1996), who used an artificial neural network

(ANN) to improve the algorithm. T05 considered roughly

800 samples for training the SVM model, with less than

2%–10% of the training set consisting of tornado cases.

T05 tested the same number of tornado and nontornado

events, and the Heidke skill score (Wilks 1995) and

the probability of detection (Wilks 1995) were used to

evaluate the classification performance. Bayesian neural

networks (BNNs; MacKay 1992) produced the largest

Heidke skill score values, although the BNN suffered

from significant false-alarm ratios (Wilks 1995), which

can be problematic for tornado forecasting. SVMs

minimized this false-alarm ratio and only decreased the

Heidke skill score slightly, so it was chosen as the best

method. Other techniques were tested in T05, including

an ANN and minimax probability machines (MPMs;

Lanckriet et al. 2002), but these methods suffered from

large bias and high false-alarm ratio.

The scope of the current project is to determine the

extent to which the synoptic signal provides classifica-

tion ability between TOs and NTOs. This goal will be

accomplished through WRF simulations of synoptic-

scale input data and statistical classification of outbreak

type from the WRF output data. It is important to note

that the present study is strictly diagnostic; no prognostic

applications are considered. Although this topic has

obvious forecast applications, without the ability to

classify significant TOs and NTOs with some skill from

a diagnostic point of view, further pursuit into a prog-

nostic application of this work will be unproductive.

Hence, the current work sets a baseline for further study

into a prognostic application of the outbreak classifica-

tion. Section 2 contains a description of the data and

methods used. Section 3 shows results from each of the

three temporal initializations. Section 4 contains con-

clusions and a summary of the results.

2. Data and methodology

a. Data and WRF model simulation

To assess the classification capability of the synoptic-

scale signal, a synoptic-scale base dataset of the top 50

TOs and NTOs from D06 was required. As a result, the

National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR)

reanalysis data (Kalnay et al. 1996), which reside on
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a 2.58 3 2.58 global grid with 17 vertical levels, were

selected. The NCEP–NCAR reanalysis data are derived

from an assimilation of model-derived data, climato-

logical data, and observational data. This assimilation

results in varied reliability of the reanalysis variables

(observational data is generally more reliable than

model-derived or climatological data). In Kalnay et al.

(1996), reanalysis variables that consist primarily of

observational data are graded higher (‘‘A’’ and ‘‘B’’),

whereas those relying on model-derived quantities are

graded as ‘‘C’’ variables and those purely based on cli-

matology are rated ‘‘D’’ variables. Because the synoptic

signal’s capability to classify outbreak type is based on

output from the WRF, those variables required for the

WRF simulation (Table 1) were scrutinized. Most vari-

ables (75%) were graded as A or B, but a few surface

variables (i.e., water-equivalent snow depth and below-

surface temperatures and moisture contents) were

graded as C variables. Thus, some error may be in-

troduced into the WRF simulations from the variables

with poor reliability.

Simulations of the top 50 TOs and NTOs from D06

were conducted at 24-, 48-, and 72-h lead times (see

Shafer et al. 2009 for a detailed review of the simulation

process). One NTO event, 5 July 1980, had a 1200 UTC

valid time (as opposed to the 0000 UTC valid time for

the remaining 99 cases), so it was rejected. The resulting

99 WRF simulations were conducted using nested grids.

The WRF ‘‘mother’’ domain was fixed at 162-km grid

spacing over a 70 3 35 gridpoint domain centered over

North America, and four nested domains were placed

inside this mother domain (54-, 18-, 6-, and 2-km grid

spacings for each). A decrease by a multiple of 3 in grid

spacing was required for the WRF simulations, because

any other decrease led to model instabilities. The model

physics schemes are given in Table 2.

Because the WRF model is incapable of resolving

tornadoes, even at 2-km grid spacing, commonly studied

severe weather parameters, known as covariates (Brown

and Murphy 1996), were computed from the WRF

output. A total of 15 different covariates (Table 3) were

considered (some at multiple levels) owing to their

common usage within the meteorological literature

(Table 3, column 3). Because these covariates typically

are studied on the mesoscale, the WRF calculated co-

variates on domain 3 (18-km grid spacing) were retained

for the statistical classification. A 21 3 21 gridpoint

portion of domain 3 centered on the TO or NTO was

extracted from the WRF output, and this domain was

used as input into the statistical methods. The outbreak

centers (Fig. 1) were chosen subjectively based in the

Storm Prediction Center’s storm reports (SeverePlot;

Hart 1993).

b. Covariate selection

Many of the covariates exhibited large correlations

(i.e., Table 4). These high correlations implied some

redundancies in the data, so creation of a smaller base

TABLE 1. NCEP–NCAR reanalysis variables required for WRF

simulations and their associated reliability grade from Kalnay et al.

(1996).

Input variable

Upper

air (U) or

surface (S) Grade

Ice Concentration (1 5 ice/0 5 no ice) S D

Land–Sea mask (1 5 land/0 5 sea) S D

Geopotential Height U/S A

Temperature U/S A

Relative humidity U/S B

‘‘Best’’ 4-layer lifted index U B

Lifted index S B

U-wind component U/S A

V-wind component U/S A

Absolute vorticity U/S A

Mean sea level pressure S A

Tropopause pressure U A

Precipitable water U/S B

Vertical speed shear at the tropopause U A

Vertical velocity U/S B

Surface pressure S B

Volumetric soil moisture content S C

Specific humidity S B

Temperature between two layers

below surface

S C

Temperature at depth below surface S C

2-m temperature S B

10-m U wind S B

10-m V wind S B

Water equivalent of accumulated

snow depth

S C

TABLE 2. Model physics schemes used in the simulation of the 100

outbreak cases (from Shafer et al. 2009).

Model Physics References

WRF Single Moment 6-class

(WSM6) microphysics

Lin et al. (1983); Dudhia

(1989); Hong et al. (1998);

Skamarock et al. (2005)

Grell–Devenyi convective scheme Grell and Devenyi (2002)

Yonsei University planetary

boundary layer scheme

Hong and Pan (1996)

MM5-derived surface layer

scheme

Skamarock et al. (2005)

5-layer thermal diffusion land

surface model

Skamarock et al. (2005)

Rapid radiative transfer model

for longwave radiation

Mlawer et al. (1997)

Dudhia shortwave radiation

scheme

Dudhia (1989)
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set of covariates was desirable. Permutation testing was

performed on fields of each of the 15 covariates consid-

ered, following the methodology of Mercer and Richman

(2007). The permutation test (Efron and Tibshirani 1993)

is a resampling technique that determines if the means

of two distributions are statistically different, making no

assumptions of the distributions of the data. This test is

superior to the t test for the present study, because the

distribution of the covariates is unknown and the t test

requires a normal distribution.

Permutation tests were conducted on the candidate

covariates for all 50 TOs and all 49 NTOs at each grid

point, and the resulting p values were calculated. In the p

value fields, values of 0.1, 0.05, and 0.01 were contoured

(corresponding to the 90%, 95%, and 99% confidence

limits). If p values are larger than these contoured

values, the means of the TO and NTO covariates are not

statistically different to the given significance level, so

the null hypothesis, which states the two distributions

are the same, cannot be rejected.

A sample plot of p values for convective available

potential energy (CAPE; Fig. 2) provides an example of

a covariate with marginal outbreak discrimination ca-

pability. In Fig. 2, some areas of statistical significance,

up to the 99% confidence level, appear in the southern

third of the domain. This result may be due to a de-

pendence of CAPE on latitude and may not be mean-

ingful. In this example, CAPE was rejected. Similar

analyses were performed for all covariates at each

lead time (Table 5). Many covariates were significant

throughout the entire domain [i.e., 0–1-km storm rela-

tive environmental helicity (SREH) at 24 h was signifi-

cant to the 99% confidence level for every grid point in

the domain].

c. Statistical methodology

Once a reduced set of covariates for each lead time

was determined from permutation testing, a principal

component analysis (PCA; Richman 1986; Wilks 1995)

was performed to reduce the gridded covariate fields to

individual values. These PC scores contained informa-

tion about the spatial structure of the data, accounting

for the physical features of the outbreaks despite a

smaller input dataset. The resulting PC scores from the

PCA were used as inputs into the statistical models.

Two methods, logistic regression (LogR) and SVMs,

were evaluated in the discrimination of the outbreak

types. LogR is a method that is linear with respect to the

logit of the binary outcome. The logit, for the present

study, is the probability of a TO versus an NTO. This

probability lends itself for a forecast application; how-

ever, because the scope of this project is to classify

outbreak type, a threshold of 0.5 is used to discriminate

between the two types.

SVM (Haykin 1999; Cristianini and Shawe-Taylor 2000;

appendix A) is a learning method that defines a decision

hyperplane for classification. This nonlinear technique

has been used in previous meteorological studies (i.e.,

T05; Mercer et al. 2008), but its appearance in the liter-

ature is limited. The SVM method requires several pa-

rameters (the cost coefficient C and the kernel function

with its associated parameters), which are tuned through

cross validation. This cross validation was conducted by

withholding 80% of the dataset for training and using the

remaining 20% for subsequent testing. Numerous kernel

functions and cost coefficients were tested using this

cross-validation dataset to determine the optimal values

of these SVM parameters for our dataset. This method

determined that the radial basis function,

k(x, y) 5 e2gkx2yk2

, (1)

was the optimal kernel function, and a cost value of

25 000 produced the best classification results on the

testing data. The optimal g value in the RBF was found

to be 0.1.

To measure the performance of a classification scheme,

contingency statistics were computed on the results from

TABLE 3. Initial 15 covariates tested for the classification of outbreak type. References for each covariate as well as levels that are

considered for each covariate are indicated.

Covariate Level(s) Reference

Surface-based CAPE Surface Stensrud et al. (1997)

Surface-based CIN Surface Markowski (2002)

LCL Rasmussen and Blanchard (1998)

Level of free convection Davies (2004)

Bulk shear 0–1, 0–3, and 0–6 km Weisman and Klemp (1984)

EHI 0–1 and 0–3 km McNulty(1995)

SREH 0–1 and 0–3 km Colquhoun and Riley (1996)

Product of CAPE and bulk shear 0–1, 0–3, and 0–6 km

Bulk Richardson number shear Droegemeier et al. (1993)
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the statistical techniques. The contingency statistics re-

quire the use of a contingency table (Wilks 1995; ap-

pendix B). Four contingency statistics, hit rate (HR),

probability of detection (POD), false-alarm ratio (FAR),

and Heidke skill score (HSS), were used to determine the

classification capabilities of both statistical methods.

These contingency statistics appear throughout the me-

teorological literature (i.e., Doswell et al. 1990; McGinley

et al. 1991; Schaefer 1990; and others) and are defined in

Wilks (1995).

A method derived from the jackknife (Efron and

Tibshirani 1993) was used in cross-validation of the PC

score data. The jackknife technique samples without

replacement, so that each case was trained and tested

FIG. 1. Outbreak centers for the (a) 50 tornado outbreaks and (b) 50 nontornadic severe

weather outbreaks. Some overlap exists between centers, so less than 50 points are on each

figure.
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upon. However, in the present work, a small percentage

of the data (15%) was withheld for testing, whereas the

remaining 85% was used for training. Once the results

for the initial training and testing set were computed,

a new testing and training set was obtained through re-

moving the first test case and adding the first training

case to the testing set, while adding the removed testing

case to the training set. For example, our first iteration

used cases 1 through 84 for training and cases 85 through

99 for testing. The second jackknife iteration used cases

2 through 85 for training, then cases 86 through 99 and

case 1 for testing. This method allows for each case to

be tested 15 times with different training sets. This

method provided a set of 99 statistical models for each

lead time, as well as 99 contingency statistics from each

model. Note that this method could not be used in a

forecasting application, because a determination of

which of the 99 models is superior would be required.

The present study is diagnostic, so this additional step

was not done.

Once the 99 contingency statistics were obtained,

bootstrap samples (Efron and Tibshirani 1993) of the

contingency statistics were computed. The bootstrap

samples with replacement the 99 contingency statistics

a user-defined number of times (for the present study,

1000 times). The same bootstrap sample was used for

each covariate combination and each statistical tech-

nique to allow for comparison between the different

methods. Subsequently, confidence limits based on the

tilted bootstrap (Efron and Tibshirani 1993) were ob-

tained to determine which statistical method performed

best. The optimal contingency statistics and their asso-

ciated confidence limits for each method and each lead

time are provided in section 3.

3. Results

The base set of covariates for each lead time (Table 5)

was used in a backward elimination methodology. In-

dividual covariates were removed from the base set to

determine if results could be improved further, result-

ing in over 20 combinations of covariates for each lead

time (i.e., Table 6). Tilted bootstrap confidence limits

were plotted (i.e., Fig. 3) to determine which covariate

combinations provided the optimal contingency statis-

tics. Median contingency statistics that are smaller (or

larger for FAR) than the lower confidence limit of the

combination that produces the largest (or smallest for

FAR) median are statistically inferior to the 95% confi-

dence limit and can be rejected. This rejection produced

TABLE 5. Optimal covariate sets determined using permutation

testing for the results at 24, 48, and 72 h. These covariates are the

base sets used for each statistical technique prior to backward co-

variate selection.

24-h selected covariates

0–1-km SREH

0–3-km SREH

Surface-based CIN

0–1-km bulk shear

Product of 0–1-km bulk shear and surface-based CAPE

Lifting condensation level

0–1-km EHI

48-h selected covariates

0–1-km SREH

0–3-km SREH

0–1-km bulk shear

0–3-km bulk shear

0–6-km bulk shear

Lifting condensation level

Bulk Richardson number shear

72-h selected covariates

0–1-km SREH

0–3-km SREH

0–3-km bulk shear

0–6-km bulk shear

Lifting condensation level

0–1-km EHI

FIG. 2. The p values from permutation testing for surface-based

CAPE at 24 h. White colors represent p values larger than 0.1,

whereas the lightest gray represents p values less than 0.1, the

darker gray represents p values less than 0.05, and black represents

p values less than 0.01. The axes are the latitudinal and longitudinal

deviations from the outbreak center in degrees.
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a smaller set of optimal covariate combinations; in some

cases, it resulted in a single optimal combination.

As an example, consider the tilted bootstrap confi-

dence intervals for 24-h lead time SVM mean contin-

gency statistics (Fig. 3). The HR plot (Fig. 3a) has the

largest median HR value with model 1, which included

all seven of the base set covariates (Table 5, top section).

Visual inspection of the figure reveals that only four

combinations are within the 95% confidence limit of the

best group (group 1) for HR. For POD (Fig. 3b), all

groupings except combination 1 are outside the 95%

limit, allowing for further rejection of covariate combi-

nations. The FAR results must be interpreted differ-

ently; the upper limit of the grouping with the lowest

median FAR (in this example group 17) must be com-

pared to the remaining results. FAR medians lying

above this upper limit are statistically inferior and

should be rejected. Group 1, which is the best for POD

and HR, is not within the 95% confidence level of group

17 and should be rejected. Consequently, for SVM at 24-

h, the optimal combination depends on the contingency

statistic being considered. The HSS results (Fig. 3d) re-

veal a combination of the results from the other three

statistics, suggesting that models 1, 9, 21, and 25 have the

same skill to a 95% confidence level. These analyses were

conducted for each statistical technique at each lead time.

a. 24-h results

As indicated previously, several combinations, includ-

ing one that contained the entire base set of covariates,

one that rejected both shear variables, and one that

rejected the product of 0–1-km bulk shear and CAPE and

surface-based CIN, produced the optimal contingency

statistics for SVM. For LogR, eight covariate combina-

tions had contingency statistic values that were within the

95% confidence limit of the group with the highest me-

dian HR and POD (the group that rejected the product of

0–1-km bulk shear and CAPE and surface-based CIN).

Hence, numerous covariate groupings were ideal for 24-h

classification with LogR, although the set is reduced

considerably from the initial set of 26 groupings.

One covariate group that was common between LogR

and SVM rejected surface-based CIN and the CAPE

shear product at 0–1 km. This grouping only included

one covariate that contained information on the thermo-

dynamic instability in the atmosphere [0–1-km energy–

helicity index (EHI)]. This result is expected (Johns et al.

1993), because thermodynamic instability magnitude

varies considerably between outbreak type (i.e., CAPE

is a necessary but not sufficient condition for a tornado

outbreak). This result confirms previous conclusions

(Stensrud et al. 1997; Johns and Hart 1993; Johns and

Doswell 1992) that thermodynamic variables are not

crucial for distinguishing storm type or outbreak type,

although they can be useful for differentiating storm

cases from those without storms.

To assess the best statistical technique for each lead

time, the two statistical methods were compared using

one of the best covariate combinations from each

method. The confidence intervals for these combinations

were tabulated to determine if one method was superior

to the other. For 24-h (Table 7) lead time, the HR results

for SVM are statistically superior (to a 95% confidence)

to the LogR results. The LogR POD, FAR, and HSS

results are within the 95% limit of the SVM results, so it

is not possible to determine which is superior.

Because most contingency statistics were indecipher-

able, it is not possible to say with certainty that one

method is superior to another, although the HR results

are statistically superior with SVM.

b. 48-h results

Both statistical methods produced smaller magni-

tudes of HR and POD at 48-h lead time, which was

anticipated because of increased WRF error with

TABLE 6. A sample of the backward elimination conducted on

the base covariate sets. This table represents 24-h lead time. Rows

1–19 show the combinations based on the optimal combination

(Table 5), and rows 20–26 show the combinations after leaving off

the product of CAPE and bulk shear, which gave the best results

among rows 1–19.

Model no. Variable(s)

1 All

2 No LCL

3 No 0–1-km CAPE shear

4 No 0–1-km bulk shear

5 No surface CIN

6 No SREH (0–1 km)

7 No SREH (0–1 km)

8 No EHI (0–1 km)

9 No shear

10 No SREH

11 Only LCL

12 Only surface CIN

13 Only 0–1-km bulk shear

14 Only 0–1-km CAPE shear

15 Only 0–1-km SREH

16 Only 0–3-km SREH

17 Only 0–1-km EHI

18 Only SREH

19 Only shear

20 No 0–1-km EHI

21 No 0–1-km bulk shear

22 No 0–1-km SREH

23 No 0–3-km SREH

24 No LCL

25 No surface-based CIN

26 No SREH (all)
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increased lead time. Reductions were typically less than

15% (i.e., Table 8). When considering SVMs, numerous

covariate combinations (more than 5) were within the

95% confidence limit of the combination with the largest

median POD and HR [0–1-km SREH, 0–1- and 0–6-km

bulk shear, bulk Richardson number shear, and lifted

condensation level (LCL)]. LogR produced two co-

variate combinations that were within the 95% limit of

the top combination (one that included all covariates

from Table 5 and one that only culled LCL). The 48-h

FAR results were optimal for one covariate combina-

tion using SVMs (which was not the same combination

as for POD and HR), whereas LogR FAR results were

optimal for numerous combinations. Numerous SVM

covariate combinations were statistically the same as the

best combination when considering HSS, whereas only

two were statistically similar with LogR. Interestingly,

SVMs performed better when more covariates were

culled (usually 0–3-km SREH and another covariate),

whereas LogR results were best when only one covariate

(0–3-km SREH) was withheld. This result is attributed

to the tendency toward linearity of the data with increased

lead time and the inclusion of multiple highly correlated

covariates that contain redundant information.

When comparing two of the top covariate combina-

tions for SVM and LogR (Table 8), the magnitudes of

the contingency statistics for LogR were larger (or smaller

FIG. 3. Tilted bootstrap confidence intervals on the four contingency statistics—(a) HR, (b) POD, (c) FAR, and

(d) HSS—for 24-h lead time and SVM. Numbers along the horizontal axis correspond to the model numbers given in

Table 6.

TABLE 7. Intertechnique comparison of the three methods em-

ployed for classification. The boldfaced contingency statistics rep-

resent the best technique for the given contingency statistic. The

numbers are the jackknife contingency results for the statistics.

2.5% limit Median 97.5% limit

HR

SVM 0.845 0.862 0.880

LogR 0.825 0.843 0.859

POD

SVM 0.806 0.832 0.857

LogR 0.811 0.840 0.867

FAR

SVM 0.093 0.116 0.145

LogR 0.110 0.141 0.163

HSS

SVM 0.678 0.728 0.752

LogR 0.646 0.681 0.713
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with FAR) than the results from SVM. Additionally, all

LogR results were statistically superior to the results

obtained from SVM at 48-h lead time. Hence, LogR is

conclusively the superior method of outbreak classifi-

cation at 48-h lead time.

c. 72-h results

Further degradation (up to 15%) of the contingency

statistic results was observed at 72-h lead time from

both methods. By 72 h, single covariates were better

at classification using both methods than combinations

of covariates. However, large variance in the bootstrap

replicates (not shown) was observed, so these results

were artificially inflated and not ideal for this work.

Thus, any results that involved employing individual

covariates for classification were rejected. Both SVMs

and LogR produced the best POD and HR results when

culling 0–1-km EHI. This covariate combination was

statistically similar to the best combination for FAR;

when considering the HSS, rejection of 0–1-km EHI

produced the best results. Hence, it was possible at 72 h

to obtain a single covariate combination that was supe-

rior for the given dataset. This result supports previous

conclusions about the capability of thermodynamic pa-

rameters to classify outbreak type.

The two methods were compared using the covariate

combination that rejected 0–1-km EHI (Table 9). The

confidence intervals given in Table 9 reveal that LogR is

superior to SVMs in producing the lowest HR, FAR,

and HSS. The two are indistinguishable at a 95% con-

fidence level when comparing POD. However, because

LogR is superior in the other three contingency statistics

and has the greatest skill, it was deemed the superior

method at 72 h for outbreak classification.

To assess the skill of the methods with increased lead

time, the confidence limits of the HSS for the two statis-

tical methods were considered. These were plotted

against lead time (Fig. 4), and the results revealed a sta-

tistically significant drop-off of HSS at each lead time

with SVMs. The LogR results did not show a statistically

significant drop of HSS between 24 and 48 h, but by 72 h

the results had degraded considerably. The skill degra-

dation, although significant, is still less than hypothesized,

so additional lead times will be tested in future work to

assess any further loss in skill.

4. Summary and conclusions

The scope of this project was to determine the ability

to discriminate between significant TOs and NTOs us-

ing model output when the model is initialized with

the synoptic-scale signal. To test the influence of the

synoptic scale, the WRF was initialized with the NCEP–

NCAR reanalysis data, which lie on a 2.58 latitude–

longitude grid. A total of 15 severe weather parameters,

referred to herein as covariates, were computed from

WRF model output on an 18-km grid. Because many of

the covariates were highly correlated, a smaller set of

covariates (6 or 7, depending on the lead time consid-

ered) was determined using permutation testing. Two

statistical methods, SVM and LogR, were employed to

distinguish between outbreak types using the reduced

covariate set as input. Jackknife cross validation was

performed to determine contingency statistics, and

bootstrap resampling of the jackknife cross-validation

results provided confidence limits on the four statistics

(HR, POD, FAR, and HSS). Analyses were performed

for 24-, 48-, and 72-h forecasts.

Neither SVM nor LogR could be singled out as the

best technique at 24 h for all contingency statistics, but

the optimal covariate sets suggested by both methods

rejected the product of 0–1-km bulk shear and CAPE

and surface-based CIN. This result supports previous

conclusions that thermodynamic quantities such as

CAPE and CIN are unable to distinguish outbreak type

(e.g., Doswell and Evans 2003; Johns et al. 1993). The

TABLE 8. As in Table 7, but for 48-h lead time.

2.5% limit Median 97.5% limit

HR

SVM 0.779 0.800 0.821

LogR 0.818 0.837 0.856

POD

SVM 0.768 0.801 0.832

LogR 0.816 0.840 0.865

FAR

SVM 0.167 0.191 0.216

LogR 0.122 0.153 0.186

HSS

SVM 0.551 0.593 0.634

LogR 0.632 0.670 0.708

TABLE 9. As in Table 7, but for 72-h lead time.

2.5% limit Median 97.5% limit

HR

SVM 0.686 0.706 0.726

LogR 0.710 0.734 0.758

POD

SVM 0.659 0.689 0.716

LogR 0.671 0.703 0.732

FAR

SVM 0.238 0.269 0.302

LogR 0.169 0.199 0.230

HSS

SVM 0.372 0.410 0.448

LogR 0.423 0.470 0.515
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results at 48 h did not reveal individual covariate com-

binations as ideal but instead suggested many different

statistically superior combinations. The 48-h confidence

limits of LogR were statistically better to 95% confi-

dence than SVM, revealing LogR as the superior 48-h

classification method for this dataset. At 72 h, LogR was

statistically superior to SVM, and a single covariate

combination (which culled 0–1-km EHI from the base set

in Table 5, bottom section) was optimal for both methods.

Thus, LogR was the superior method at both 48- and 72-h

lead times.

Some degradation of the HSS (5%–10%) was noted

between 24- and 48-h lead times, which is expected

owing to forecast uncertainty increasing with increasing

lead time. This degradation was not statistically signifi-

cant to a 95% confidence level with LogR, but the drop-

off was significant to the 95% level for SVM. By 72 h,

a significant (to a 95% confidence) drop-off of the HSS

was observed from both methods. The authors hypoth-

esize that the skill will decrease further as lead time in-

creases, and additional lead times may be considered in

future work. Overall, these results suggest that model-

predictable covariates on the synoptic scale seem to play

a substantial role in the occurrence and type of severe

weather outbreak that occurs. Outbreak discrimination

using model forecasts initialized with synoptic-scale data

is potentially reliable several days before the outbreak,

and further consideration into a prognostic application

of this work should be undertaken.

Future work in this research will include modifying

the case list to comprise only those cases that occur in

the same season(s), owing to seasonal dependence of

some of the covariates considered (CAPE, CIN, etc.).

This problem likely has artificially inflated the initial

results (Shafer et al. 2009), so it is important to account

for any seasonal dependence by ensuring a seasonally

uniform dataset. Adding cases to the training and testing

phase allows for more robust statistical models, which

likely would improve results. However, consideration of

additional null cases (those that do not produce an

outbreak) or marginal cases (those that could be clas-

sified as a TO or an NTO) will significantly increase the

challenge of classifying outbreak type. One such chal-

lenge associated with the addition of these cases is the

determination of new optimal covariate sets for these

marginal and null cases. Forecast applications eventu-

ally will be considered, because the probability of a TO

or NTO can be obtained from LogR and SVMs, al-

though the increased difficulty of classifying null cases

from TOs and NTOs may require significant modifica-

tion of the current methodology.

Acknowledgments. We thank Dr. Peter Lamb for

support in this research. We also thank Dr. Theodore

Trafalis for assistance with tuning support vector ma-

chines and Dr. Kelvin Droegemeier for providing ad-

ditional insight as to the best methods to approach this

problem. Dr. Henry Neeman and OSCER provided

computing resources for running the WRF simulations.

This work is funded by Grant ATM-0527934. Finally, we

wish to thank the reviewers for their help in improving

this work.

APPENDIX A

Support Vector Machine Description

An SVM is a learning method that defines a decision

hyperplane for classification. A decision hyperplane

(analogous to a decision line in linear regression) for

the higher dimensional problem is obtained, and the

classification is performed based on this plane.

According to Haykin (1999), the decision hyperplane

can be given as

FIG. 4. Median and confidence intervals of HSS with lead time for

(a) SVMs and (b) LogR.
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wTx 1 b 5 0, (A1)

where w is a vector of weights, x represents the co-

variates, and b is an intercept. For classification, this

decision hyperplane can be formulated as

wTx 1 b . 0 for y 5 1

wTx 1 b , 0 for y 521 , (A2)

where 1 and 21 represent the two classes. To discrimi-

nate best between the two classes, the separation be-

tween the points nearest the separating hyperplane must

be maximized. This leads to a quadratic programming

optimization problem given by

minu(x)5
1

2
wTw

subject to y
i
(wTx

i
1 b) $ 1 i 5 1 . . . l . (A3)

This problem can be solved by first determining the

Lagrangian, which is given by

L(w, b, L) 5
1

2
w2
�
�

�
�2�

l

i51
l

i
[ y

i
(wx

i
1 b) 2 1], (A4)

where the values of li are Lagrange multipliers. The

optimality conditions of (A4) are given by

›L(w, b, L)

›w
5 w 2 �

l

i51
l

i
y

i
x

i
5 0

›L(w, b, L)

›b
5 2�

l

i51
l

i
y

i
5 0, (A5)

so that the optimal weights w* are

w* 5 �
l

i51
l

i
y

i
x

i
. (A6)

Substituting (A6) into (A4) gives the dual formulation

of this quadratic optimization problem:

maxF(L) 5�
l

i51
l

i
2

1

2
�

l

i51
�

l

j51
l

i
l

j
y

i
y

j
x

i
x

j

subject to �
l

i51
l

i
y

i
5 0 l

i
$ 0, (A7)

which is the SVM dual problem that is solved in this

study.

Many datasets that use SVMs are not linearly sepa-

rable (i.e., a separating hyperplane cannot be found). In

such cases, the data are input into a kernel function,

which increases the dimensionality of the data so that

a separating hyperplane can be found (Cristianini and

Shawe-Taylor 2000; Schölkopf and Smola 2002). This is

an appealing characteristic of kernel methods and a

powerful way to handle nonlinearity in the data. Multi-

ple SVM experiments are conducted to determine the

kernel function that provides the largest discrimination

ability. Some examples of kernel functions include

1) polynomial

k(x, y) 5 (xTy 1 1)p, (A8)

2) radial basis function

k(x, y) 5 e(21/2s2)kx2yk2

, and (A9)

3) tangent hyperbolic

k(x, y) 5 tanh(b
o
xTy 1 b

1
). (A10)

APPENDIX B

Contingency Statistic Description

To measure the performance of a classification scheme,

contingency statistics (Wilks 1995) are computed on the

results from the statistical techniques. The contingency

statistics require the creation of a contingency table

(Table B1). Four contingency statistics are computed

from the contingency table (Table B1) in the present

study to determine classification performance. The hit

rate is given as

HR 5
a 1 d

n
. (B1)

TABLE B1. A sample contingency table. The top row of the

contingency table showed the number of correctly classified TOs

(a) and the number of predicted TOs when an NTO was observed

(b). The bottom row gives the number of TOs observed when an

NTO resulted from the algorithm (c) and the number of correctly

classified NTOs (d).

Forecast

Obs

Yes (1) No (0)

Yes (1) a b

No (0) c d
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This statistic measures the number of correct yes (tor-

nado outbreak) classifications and no (nontornado out-

break) classifications, but it gives no insight into the

errors associated with the techniques.

The probability of detection is

POD 5
a

a 1 c
. (B2)

This statistic provides a measure of the number of cor-

rect tornado outbreak classifications versus the total

number of tornado outbreak classifications. Higher

POD values suggest better classification for the statis-

tical technique.

The false-alarm ratio is given as

FAR 5
b

a 1 b
, (B3)

and it provides a measure of the number of classifica-

tions of a tornado outbreak when one did not occur. A

smaller value of the FAR indicates lower false alarms of

tornado outbreaks, which is desirable.

The final contingency statistic considered is the Heidke

skill score:

HSS 5
2(ad 2 bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d)
. (B4)

The HSS provides a skill measure to the discrimina-

tion methods employed herein. Values closer to 1 are

desirable.
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