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ABSTRACT

Recent studies, investigating the ability to use the Weather Research and Forecasting (WRF) model to

distinguish tornado outbreaks from primarily nontornadic outbreaks when initialized with synoptic-scale

data, have suggested that accurate discrimination of outbreak type is possible up to three days in advance of

the outbreaks. However, these studies have focused on the most meteorologically significant events without

regard to the season in which the outbreaks occurred. Because tornado outbreaks usually occur during the

spring and fall seasons, whereas the primarily nontornadic outbreaks develop predominantly during the

summer, the results of these studies may have been influenced by climatological conditions (e.g., reduced

shear, in the mean, in the summer months), in addition to synoptic-scale processes.

This study focuses on the impacts of choosing outbreaks of severe weather during the same time of year.

Specifically, primarily nontornadic outbreaks that occurred during the summer have been replaced with

outbreaks that do not occur in the summer. Subjective and objective analyses of the outbreak simulations

indicate that the WRF’s capability of distinguishing outbreak type correctly is reduced when the seasonal

constraints are included. However, accuracy scores exceeding 0.7 and skill scores exceeding 0.5 using 1-day

simulation fields of individual meteorological parameters, show that precursor synoptic-scale processes play

an important role in the occurrence or absence of tornadoes in severe weather outbreaks. Low-level storm-

relative helicity parameters and synoptic parameters, such as geopotential heights and mean sea level pressure,

appear to be most helpful in distinguishing outbreak type, whereas thermodynamic instability parameters are

noticeably both less accurate and less skillful.

1. Introduction

In recent studies by Shafer et al. (2009, hereafter S09)

and Mercer et al. (2009, hereafter M09), subjective and

objective analysis of 50 tornado outbreaks (TOs) and

49 primarily nontornadic outbreaks (PNOs) indicated

that the Weather Research and Forecasting (WRF)

model can be used to distinguish between the two types

of outbreaks up to three days in advance using only

synoptic-scale data as input. These studies demonstrate

that synoptic-scale processes play a substantial role in

the occurrence or absence of tornado outbreaks, con-

firming the conclusions of, for example, Johns and

Doswell (1992, hereafter JD92), Doswell et al. (1993),

Stensrud et al. (1997, hereafter SCB97), and Doswell and

Bosart (2001). Furthermore, some severe weather pa-

rameters associated with mesocyclones and tornadoes,

and referred to as meteorological covariates (Brown and

Murphy 1996; Brooks et al. 2003b), were found to be

particularly effective in the discrimination of these out-

breaks. These parameters include: storm-relative envi-

ronmental helicity (SREH; Davies-Jones et al. 1990),

low-level and deep-layer bulk shear (Bunkers 2002),

the energy helicity index (EHI; Hart and Korotky 1991;

Davies 1993), low-level storm-relative flow (SRFL; Kerr

and Darkow 1996), and the lifting condensation level
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(LCL; Rasmussen and Blanchard 1998). Many of these

parameters have been found to be effective discriminat-

ing variables of particular storm types or observed severe

weather in recent studies (e.g., JD92; Davies and Johns

1993; Johns et al. 1993; Brooks et al. 1994a,b; SCB97;

Rasmussen and Blanchard 1998; Craven et al. 2002a,b;

Brooks et al. 2003b; Doswell and Evans 2003; Markowski

et al. 2003; Thompson et al. 2003).

The outbreaks selected in S09 and M09 (Fig. 1) were

the highest ranking TOs from the period 1970–2003 and

PNOs from the period 1980–2003, according to a study

by Doswell et al. (2006).1 As expected, high-ranked TOs

are most common from March through June, whereas

the highest-ranked PNOs were most common from June

through August. This seasonal bias has been observed

by JD92, Brooks et al. (2003a), Doswell et al. (2005), and

others. The samples of TOs and PNOs selected in S09 and

M09, and the meteorological covariates used for dis-

crimination, may not have accounted for all the vari-

ability in the observed fields, in part because of the

seasonal differences in the distributions of TOs and

PNOs and their resultant influences on the simulated

fields.

The results of S09 and M09 indicate that the most sig-

nificant TOs and PNOs, based on the two multivariate

indices developed for each type of outbreak by Doswell

et al. (2006), could be distinguished easily. Convective

available potential energy (CAPE) is generally higher

during the warm season and lower during the cool season,

whereas wind fields supportive of supercell development

and tornadoes are more frequent during the transition

seasons of spring and fall than during the summer (JD92).

It is not surprising that the highest-ranked TOs in S09 and

M09 occurred during the spring, when the collocation of

favorable instability and wind shear is more common.

During the summer, when wind profiles are generally

less conducive for midlevel mesocyclone development,

PNO occurrence is frequent relative to TO occurrence,

perhaps owing in part to commonly unfavorably high

LCLs for widespread tornado development (Brooks et al.

2003b). Because of these seasonal tendencies, discrimi-

nation of TOs occurring primarily in the spring and fall

from PNOs occurring primarily during the summer

should be relatively simple.

Subjective analysis by S09 suggested that PNOs oc-

curring outside of the summer were indeed more difficult

to distinguish from TOs. Like the TOs, these PNO cases

commonly featured strong shortwave troughs and associ-

ated wind fields, suggesting the need for a more thorough

investigation of the seasonal impacts on the WRF’s ability

to distinguish outbreak type.2 Furthermore, an investiga-

tion of the susceptibility of particular meteorological co-

variates to seasonal influences is required. This study is a

follow-up to S09 and M09, and investigates the extent to

which seasonal influences affect the statistics describing

the ability of the WRF to discriminate outbreak type.

FIG. 1. Number of tornadic and primarily nontornadic outbreaks by month for the original set

of cases.

1 These cases were chosen because they represent the most im-

portant, prototypical cases of each type of outbreak. If little or no

ability to discriminate between outbreak types was found with

these cases, then there would be little need to investigate more

marginal cases of each type, or outbreaks of severe weather not

easily classified as either type.

2 The WRF’s ability to distinguish outbreak type, using synoptic-

scale initial conditions, is being evaluated in this study. Though the

focus of this study is the determination of the degree to which

synoptic-scale processes play a role in discriminating TOs from

PNOs, we are not suggesting that the results will be identical using

a different mesoscale model. Thus, our results should be interpreted

as the WRF’s ability to discriminate outbreak type, using synoptic-

scale initial conditions.
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Such modification of the PNO sample makes sense

from a forecasting standpoint.3 Because TOs in the sum-

mer are relatively rare events, distinguishing between TOs

and PNOs would not be a common forecasting concern.

Outside of the summer season, both TOs and PNOs

are observed, making distinction of cases during this time

of year more difficult and more important. A sample of

PNOs outside of summer may not be representative of the

entire population of PNOs, as those occurring during the

summer season would be excluded; however, the dis-

crimination of PNOs outside of the summer months is

more important operationally and may provide more

complete insight into the utility of various severe weather

parameters in distinguishing TOs and PNOs in synoptic-

scale environments that are comparable.

2. Data and methodology

a. The cases

To determine the influence of the time of year on the

ability to distinguish outbreak type, two sets of cases

have been developed. The first is identical to that used in

S09 and M09 (Fig. 1; S09, their Tables 1 and 2) and

consists of 50 outbreaks of each type. As explained in

S09, this number was selected to ensure stability and

meaningfulness of conclusions, as discussed in Doswell

(2007). Hereafter, this first set of cases will be referred to

as the ‘‘original’’ set. Because no TO in the original set of

cases occurred from the period 17 June to 24 September,

the second set of cases excludes PNOs that occurred

during this period. Any PNO that occurred outside this

period in the original set of cases was included in the

second set of cases. The TOs for each set of cases are the

same. Hereafter, the second set of cases will be referred

to as the ‘‘revised’’ set (Fig. 2; Table 1) and includes only

high-ranked PNOs that happened outside of the exclusion

period (effectively, the summer season). The selection of

cases is based on the ranking algorithms developed by

Doswell et al. (2006) for TOs and PNOs.

An outbreak day is defined to be from the period

1200 UTC on the indicated day to 1200 UTC the fol-

lowing day. For example, the 3 May 1999 TO is valid from

1200 UTC 3 May 1999 to 1200 UTC 4 May 1999. Any

outbreak observed to begin outside a 6-h window from

0000 UTC during an outbreak day is excluded from the

study (e.g., the 5 July 1980 PNO).

b. The initial dataset

A key aspect of this study is to determine the degree

to which synoptic-scale processes occurring before the

outbreak influence the magnitude of the tornado com-

ponent in severe convective storm outbreaks. There-

fore, the data used to initialize the WRF simulations of

TABLE 1. The top 50 PNOs in the revised set of cases.

10 Apr 1981 25 Nov 1988 22 May 1999

28 Apr 1981 21 May 1989 19 Apr 2000

8 May 1981 20 Nov 1989 10 May 2000

8 Jun 1982 16 Apr 1990 13 May 2000

18 Mar 1984 19 Mar 1992 2 Jun 2000

14 Apr 1984 10 Jun 1992 6 Apr 2001

20 Oct 1984 31 Mar 1993 9 Apr 2001

12 May 1985 17 May 1993 14 Apr 2001

4 Jun 1985 12 Oct 1993 17 May 2001

5 Jun 1985 10 Apr 1994 14 Jun 2001

7 Jun 1985 4 Nov 1994 2 May 2002

6 May 1986 10 Apr 1995 15 Jun 2002

24 May 1986 24 Mar 1996 2 May 2003

14 Feb 1987 5 May 1996 13 May 2003

21 May 1987 18 May 1996

17 May 1988 29 May 1998

24 May 1988 12 Jun 1998

2 Jun 1988 13 May 1999

FIG. 2. As in Fig. 1, but for the revised set of cases.

3 As section 2 will discuss, our study is not a forecasting study,

however. This project investigates past cases, and much more needs

to be done before implementation of our results in an operational

setting (section 5).
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the outbreaks should be limited to synoptic-scale fea-

tures in some manner. Furthermore, TOs and PNOs are

relatively rare meteorological phenomena, requiring

a relatively long dataset to be available. A dataset that

meets these needs is the National Centers for Environ-

mental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) reanalysis dataset (Kalnay

et al. 1996). A reanalysis is available at 0000, 0600, 1200,

and 1800 UTC daily from 1948 onward. With a hori-

zontal grid spacing of 2.58 latitude by longitude (ap-

proximately 200 km), 17 vertical levels, and optimal

interpolation-based quality control of the data (Woollen

1991; Woollen et al. 1994) to remove erroneous data or

measurements that do not represent the spatial and

temporal scales intended for the analysis, the NCEP–

NCAR reanalysis dataset represents ‘‘synoptic scale’’

data as discussed by Orlanski (1975) and Holton (1992),

among others. Additional details on the development of

this dataset are provided by Kalnay et al. (1996) and S09.

c. WRF model physics and domain setup

To perform the outbreak simulations, versions 2.1.2,

2.2, and 3.0.1.1 of the WRF (Skamarock et al. 2005,

2008) were used for this study. A description of the WRF

and the physical setup is provided in S09 and is identical

with this study. A brief summary of the most important

aspects of the simulations is provided below.

The parameterization schemes selected for this study

(Table 2) are those of S09. Lateral boundary conditions

for each simulation were implemented using the relevant

NCEP–NCAR reanalysis datasets, and the model top was

at 50 hPa. Every simulation featured five domains (Fig. 3),

with domain 1 fixed. Domains 2 and 5 were fixed with re-

spect to their parent domain, whereas domains 3 and 4 were

positioned to be centered on where each outbreak was ob-

served. This positioning was performed subjectively, based

on the reports as plotted by Severe Plot (SVRPLOT; Hart

1993). Domain 1 had a horizontal grid spacing of 162 km,

and the grid spacing was reduced by a factor of 3 for each

child domain. There were 31 vertical levels for each do-

main, stretched with height to resolve the boundary layer

more adequately. Two-way nesting was incorporated. Each

outbreak case was simulated for 1-, 2-, and 3-day forecasts.

Because the valid time of the outbreak for each case was

assumed to be 0000 UTC, a 1-day simulation was initialized

at 0000 UTC the previous day. For example, for the 3 May

1999 TO, the 1-day simulation was initialized at 0000 UTC

3 May 1999 and was considered valid at 0000 UTC 4 May

1999. S09 found little decline in the ability of the WRF to

distinguish outbreak type 3 days in advance of the outbreak

compared to 1 day in advance using the original set of ca-

ses. A key question to be analyzed in this study is whether

greater degradation in time is noted with the WRF’s ability

to discriminate outbreak type using the revised set of cases,

which is likely to have implications on predictability of

outbreak type in operational forecast settings.

d. Permutation testing

After the simulations were performed, both subjective

and objective analyses were conducted. We sought to de-

termine if synoptic-scale processes occurring before the

outbreak influenced the mesoscale environments of the two

types of outbreaks and can be distinguished accordingly.

With this objective in mind, the objective analysis begins by

using a portion (21 3 21 grid points) of domain 3 (18-km

grid spacing; Fig. 3) centered on the observed outbreak.

The center of the outbreak was chosen subjectively, by

analyzing the severe reports of the SVRPLOT program.4

Objective determination of the outbreak center was not

carried out, but may be considered in future studies.

The choice of domain was shown by M09 to be a prac-

tical means of objectively classifying outbreak type. Phase

and timing errors in model simulations possibly could

result in the severe environment not being represented in

the domain at the valid time of the outbreak, and this is

TABLE 2. Model physical schemes used for this study.

Model physics References

WRF Single Moment 6-class (WSM6) microphysics Lin et al. (1983); Dudhia (1989); Hong et al.

(1998); Skamarock et al. (2005; 2008)

Grell–Devenyi convective scheme; not used

for domains 4 and 5

Grell and Devenyi (2002)

Yonsei University planetary boundary layer scheme Hong and Pan (1996)

MM5-derived surface layer scheme Skamarock et al. (2005, 2008)

Five-layer thermal diffusion land surface model Skamarock et al. (2005, 2008)

Rapid radiative transfer model for longwave radiation Mlawer et al. (1997)

Dudhia shortwave radiation scheme Dudhia (1989)

4 The center of the outbreak was not chosen as the approximate

mean or median location of all of the severe reports on a given

outbreak day. Rather, the center was chosen to be the approximate

mean or median location of the tornado reports for TOs and the

approximate mean or median location of severe reports in a 6-h

period around the outbreak valid time for PNOs.
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not accounted for in the current study. However, S09

showed that these errors would affect the classifications

for a small number (,10%) of cases, suggesting that the

domain size is acceptable for our purposes. An investi-

gation into increasing the domain size to 41 3 41 grid

points suggested that changes in the contingency statistics

were not statistically significant at the 0.05 level (not

shown). Section 5 elaborates upon the difficulties faced

when choosing the model’s outbreak center.

Permutation testing (Efron and Tibshirani 1993) of

1-day WRF simulated fields at each of the 441 grid points

for several meteorological covariates associated with se-

vere weather and tornadoes (as in M09) was performed,

for a subset of 25 PNOs occurring only during the sum-

mer season (defined herein as 17 June–24 September; see

section 2a) and for a subset of 25 PNOs occurring outside

of the summer season. Permutation testing determines

whether the means of two distributions are statistically

distinct, with no assumptions regarding the distributions

[see Mercer and Richman (2007) and M09 for more dis-

cussion]. As indicated in Table 3, the percentage of grid

points in which the p value was less than 0.1 was greater

than 50% for most severe weather parameters (indicating

the means of the two distributions were significantly dif-

ferent to 90% confidence at those particular grid points).

For parameters such as surface-based CAPE (SBCAPE),

LCL, and deep-layer shear, a majority of grid points

featured p values ,0.05, confirming the seasonal de-

pendence of these variables as suggested by S09. The

results of these permutation tests provide support for

investigating the differences in discrimination capability

for PNOs occurring specifically during the times of year in

which TOs are relatively common.

e. Objective classification

The 441 grid points for each meteorological field were

combined for each case in the original and revised lists to

create a (441 3 n) 3 N data matrix for a principal

component analysis (PCA; Richman 1986), where n is

the number of meteorological variables included in the

analysis and N is the number of cases in each list (99 for

the original cases; 100 for the revised cases). PCA allows

for the reduction of the data matrices (i.e., the gridded

fields from the ‘‘subdomain’’) while maintaining infor-

mation on the spatial structure of the meteorological

fields. This PCA methodology is an objective means

of accounting for the spatial patterns in the variables. The

PC score matrix is of dimensions N 3 r, where r is the

number of PCs retained (e.g., by scree test that plots

the eigenvalue magnitude against eigenvalue number;

FIG. 3. Sample domain setup for WRF simulations (from S09).

TABLE 3. Results of permutation tests of the 1-day WRF simula-

tions of 25 PNOs occurring from the period 17 Jun–24 Sep and 25

PNOs occurring outside this period. Values indicate the percentage of

the 441 grid points analyzed in which the p values are less than that

indicated. Refer to Table 4 for parameter abbreviations.

Covariate

p ,

0.1

p ,

0.05

p ,

0.01

0–1-km bulk shear 56.24 43.54 13.61

0–3-km bulk shear 58.73 52.61 40.59

0–6-km bulk shear 97.73 77.55 51.70

Bulk Richardson number shear 46.03 40.36 11.79

Surface-based CAPE 100.00 99.09 76.42

Surface-based CIN 23.36 14.74 7.94

Product of CAPE and 0–1-km shear 87.53 64.40 15.87

Product of CAPE and 0–3-km shear 92.06 75.96 19.05

Product of CAPE and 0–6-km shear 89.57 56.46 14.29

0–1-km EHI 15.87 4.99 0.00

0–3-km EHI 20.41 6.12 0.00

LCL 78.00 58.96 15.87

LFC 0.23 0.00 0.00

Mean sea level pressure 63.27 8.16 0.00

Storm-relative flow 65.76 55.56 22.68

0–1-km SREH 54.42 45.35 21.54

0–3-km SREH 55.78 50.34 29.02

Vorticity generation potential (VGP) 64.63 48.07 16.33
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Wilks 1995). Because there were two sets of cases to

analyze, two PCAs were conducted for each meteoro-

logical variable or combination of variables analyzed.

The PC score matrices from each PCA were used as

input for a statistical method known as support vector

machines (SVMs; Haykin 1999; Cristianini and Shawe-

Taylor 2000). An SVM is a method of machine learning

that determines a hyperplane that classifies the data

optimally. An overview of binary SVM classification is

provided in appendix A of M09. The utility of SVMs in

previous studies (e.g., Lee et al. 2004; Richman et al.

2005; Mercer et al. 2008; M09), as well as with classifying

the original set of outbreak cases in M09, provides

support for their use in this study.

A particularly attractive characteristic of SVMs is their

ability to model nonlinear input. Kernel functions (KFs)

are used to map input data that are not linearly separable

into a higher-dimensional dataset (Cristianini and Shawe-

Taylor 2000). Three KFs were tested in this study:

d Polynomial KF

k(x, y) 5 (xTy 1 1)p. (1)

d Radial basis KF

k(x, y) 5 e�1/2s2kx�yk2

. (2)

d Tangent hyperbolic KF

k(x, y) 5 tanh(b
o
xTy 1 b

1
). (3)

The radial basis KF typically outperformed the other

kernel function techniques when classifying data in this

study, using the same cross-validation technique as ap-

plied in M09, and was used in the subsequent analysis

described below.

The statistical model developed by the SVMs must be

generalized to classify cases not supplied in a training

set. A technique derived from the so-called jackknife

(Efron and Tibshirani 1993) is conducted on the datasets

to carry out this criterion. For the original (revised) set

of cases, the 99 (100) cases were placed in random or-

der.5 The first 85% of the cases were used as a training

set, and the remaining 15% were used to test the

statistical model.6 This process was repeated, in which

the first training case was placed in the testing set and the

first test case was placed in the training set: 99 (100) times

for the original (revised) set of cases to ensure that each

case was trained and tested. The SVMs feature tuning

parameters, including a cost coefficient (see Cristianini

and Shawe-Taylor 2000; Mercer et al. 2008; M09) and

parameters in the kernel function, such as s in (2), that

can be modified to assess the generalization of the sta-

tistical model developed. [Note that p in (1) and bo and

b1 in (3) are also tuning parameters.] Unfortunately, de-

termination of optimal values for these parameters is

computationally demanding and commonly infeasible to

calculate. Though a range of values for each of the tuning

parameters was assessed for each PC score matrix ana-

lyzed, there is no guarantee that the tuning parameters

selected were the ‘‘optimal solution’’ to the classification

problem. This is a relatively minor concern, however,

because of the nature of the optimality problem. In three-

dimensional space (the two tuning parameters, using the

radial basis kernel function, and the statistic being cal-

culated), the optimal maximum (minimum) either has

a steep or small ascent (descent). If the slope is steep,

determination of values close to the optimal value is

relatively easy. If the slope is small, determination of the

optimal values provides little additional gain.

A large number of meteorological covariates could be

analyzed when assessing the WRF’s ability to distinguish

outbreak type. For each variable individually and in

combination with other variables, the above technique

must be performed. A preemptive reduction to a few

physically meaningful variables (e.g., using permutation

testing; see M09) may offer limited benefit. For example,

if eight meteorological covariates were found to be

physically meaningful for discriminating outbreak types,

there would be 28 – 1, or 255, possible combinations of

variables. Clearly, this becomes a time-consuming task, as

99 statistical models have been evaluated for each of

a potentially very large number of variable combinations

(for the original set of cases), only after determining the

best tunable parameters for the SVM. Combined with the

same procedure necessary for the revised set of cases, an

exhaustive analysis of WRF simulations of meteorologi-

cal covariates becomes impractical.

5 Note that the statistical models were developed separately for

the original set of cases and for the revised set of cases. That is,

a subset of the original (revised) dataset was used to develop

a statistical model to be tested on the remaining cases of the

original (revised) dataset. The statistical models developed using

the original (revised) training data were not tested on cases in the

revised (original) dataset.

6 Various numbers of training set cases were tested with some of

the meteorological parameters (specifically, 5%, 10%, . . . , 95% of

the total number of cases). The results indicated that the contin-

gency statistics improved with increased training set size, but the

uncertainty in the results increased (not shown). The choice of

a training set size of 85% was observed to be a good compromise

for the two trends.
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This study is concerned primarily with individual

meteorological fields, in contrast with M09, because of

the limitations described above.7 This emphasis on sin-

gle variables permits investigation into the relative util-

ity of each meteorological covariate for each set of cases

(original and revised) while still allowing a comparison

between the WRF’s ability to distinguish outbreaks for

the original set of cases with that for the revised set of

cases. However, some combinations of meteorological

covariates are considered in section 4 to evaluate the

utility in looking at multiple variables to diagnose out-

break type.

A limitation of the discriminating algorithm used in

this study is that the SVM produces 99 (100) statistical

models for distinguishing outbreak type for the original

(revised) set of cases. Determination of the ‘‘best’’ statis-

tical model for forecast applications requires a completely

independent set of cases to evaluate each statistical

model’s utility. However, TOs and PNOs are rare events,

and accumulation of a large number of cases would require

many more years of outbreaks to observe and analyze

(Doswell 2007).

Because this study is a binary classification problem,

contingency statistics (e.g., Wilks 1995) can be com-

puted for the performance of the statistical models de-

veloped by the SVM on the test data. Numerous statistics

were analyzed in this study, including hit rate (HR),

probability of detection (POD), false alarm ratio (FAR),

probability of false detection (POFD), the Heidke skill

score (HSS; Doolittle 1888), and the Peirce skill score

(PSS; Peirce 1884). Finally, 95% confidence limits based

on bootstrap tilting (Efron and Tibshirani 1993) are com-

puted for each of the contingency statistics8 to compare

the capability of the WRF, using synoptic-scale input,

at distinguishing outbreak type for the original and

revised set of cases, to compare various meteorologi-

cal covariates to each other for the same set of cases

FIG. 4. Tilted bootstrap confidence intervals of the HR for 1-, 2-, and 3-day simulations for (a) 0–1-km SREH,

(b) LCL, (c) SBCAPE, and (d) MSLP, for the original (orig) and revised (rev) set of cases.

7 We are by no means suggesting that the optimal set of mete-

orological parameters in distinguishing outbreak type is a single

variable. The limitations of using a single variable to distinguish

outbreak type are addressed in S09 and M09. For example, M09

noted that there is more variability in the bootstrap samples of the

contingency statistics of the statistical model predictions for single

variable fields versus fields with a large number of parameters.

8 The bootstrap samples are composed of matrices of 15 3 N

rows and 4 columns, where 15 3 N is the total number of tests

conducted for the N statistical models developed and each of the

columns represents a possible forecast/observed pair in the con-

tingency table. Contingency statistics are calculated for each

bootstrap sample.
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for the same forecast period, and to investigate fore-

cast degradation or improvement as forecast period

increases.

The statistical models developed by the SVM used in

this study often are difficult to interpret physically

(owing to nonlinearity). Subjective analysis of the in-

dividual simulations can be conducted to identify any

systematic differences of TO and PNO cases that the

statistical model has used to discriminate the outbreak

types. Similarities between subjective and objective

analyses have been observed in previous studies (cf. S09

and M09), but some examples of complementary sub-

jective analysis will be provided in section 4 for com-

pleteness.

As noted in S09, the results of this study are condi-

tioned on the occurrence of severe weather outbreaks.

This is not a forecasting study. Determining whether an

outbreak of some type will occur, given a WRF (or any

model) simulation, is beyond the scope of this work.

Furthermore, the model fields are analyzed where and

when the actual outbreak occurred. Any spatial and

temporal errors in the model simulations are not ac-

counted for and very likely affect the results discussed in

the following sections. However, these errors are ob-

served in a relatively small number of cases (S09, see

their sections 4e,f and their Tables 7 and 8).

3. Results

a. Comparison of discrimination capability for
original and revised cases

An analysis of the tilted bootstrap 95% confidence

intervals (CIs) for HR (Fig. 4), POD (not shown), FAR

(Fig. 5), POFD (not shown), HSS (not shown), and PSS

(Fig. 6) for four meteorological covariates indicates that

the WRF, using synoptic-scale initial data, is significantly

less capable of distinguishing outbreak type correctly

when the list of cases is constrained to exclude events

occurring in the summer months. For example, the HR

CIs for 0–1 km SREH (SREH1) for 1-, 2-, and 3-day

simulations do not overlap, suggesting that the WRF’s

ability to distinguish outbreak type using SREH1 is sig-

nificantly degraded when using the revised set of cases.

Differences in the median of the bootstrap CIs for the

original and revised sets of cases generally are within

the range of 5%–10% for each of the forecast periods. The

observed HR and the medians of the HR CIs suggest that

there is approximately 82%–83% accuracy in determining

outbreak type for 1-day simulations of the original set of

cases, with a reduction to 73%–75% for 1-day simulations

of the revised set of cases. Although this degradation is

nontrivial, these scores indicate that discrimination of

outbreak type using SREH1 is still relatively good when

FIG. 5. As in Fig. 4, but for the FAR.
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using only synoptic-scale data as initial input into the

model. Even 3-day simulations show some accuracy in

the revised set of cases. The median of the HR CIs for the

original set of cases is above 70%, decreasing to slightly

above 60% for the revised set of cases. No CIs overlap

HRs of 0.5 (equivalent to flipping a coin).

However, degradation is more pronounced for the

LCL, with differences in the observed HR and medians

of the HR CIs ranging from 15% to 20%. This result

suggests that the LCL is especially susceptible to sea-

sonal influences. This was posited by S09, who suggested

that higher LCLs were common with many PNOs during

the summer months, owing to a prevalence of relatively

hot, dry, well-mixed boundary layers.

The trends of the HR CIs for SBCAPE and other ther-

modynamic variables are much different than wind and

synoptic parameters. In general, there is a gradual decline

in HR with time for the original set of cases (though

overlap in the CIs is commonly observed), whereas there is

slow improvement with increased forecast period for the

revised set of cases. This slow improvement is possible be-

cause simulated convection often occurs with 1-day simu-

lations, which acts to remove instability. This tendency can

be interpreted to mean that using CAPE, CIN, and other

thermodynamic parameters in the short range are unhelp-

ful if simulated convection has already developed in the

simulation. However, 2- and 3-day simulations contain

more instances in which no simulated convection de-

velops (S09, see their section 4f), making distinction of

outbreaks using SBCAPE more feasible.

This trend was not observed with the original set of

cases, possibly because many of the PNOs occur during

the summer months. These events typically involve subtle

synoptic-scale shortwave troughs and limited large-scale

upward vertical motion. Simulated convection is less

likely to develop in these circumstances (e.g., Stensrud

and Fritsch 1994; Moller 2001), allowing the thermody-

namic instability parameters to remain relatively undis-

turbed. Subtle degradation is observed with these cases,

as more TO simulations feature poorly simulated con-

vection with increasing forecast lead time.

As indicated by the HR, FAR, and PSS CIs, there is

little accuracy or skill in using SBCAPE as a meteoro-

logical covariate in any of the forecast periods for either

set of cases. This result, and those for SBCIN and other

instability parameters (not shown), suggests that ther-

modynamic instability parameters are generally un-

helpful in distinguishing outbreak type. This agrees

with several previous studies (JD92; Johns et al. 1993;

Monteverdi et al. 2003; S09; M09), many of which in-

dicate that tornadoes can occur within a wide range of

CAPE values.

It was also posited by S09 that the strength and spatial

structure of the shortwave troughs and surface cyclones

FIG. 6. As in Fig. 4, but for the PSS.
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could be used as a reliable means of distinguishing out-

break type. In this study, several ‘‘synoptic parameters,’’

including geopotential height, wind speed, temperature,

relative humidity, and mean sea level pressure (MSLP)

also were analyzed to determine if these parameters could

be useful in outbreak discrimination. Indeed, results ap-

pear to indicate the utility of certain parameters, including

low-level geopotential heights, low-level wind speeds, and

MSLP. For example, the HR CIs for MSLP appear to

have ranges of values similar to or higher than those for

SREH1, indicating that using either parameter could

provide similar accuracy in discriminating outbreak type.

This result should not be taken to suggest that MSLP or

other synoptic parameters can predict outbreaks of se-

vere weather as well or better than severe weather pa-

rameters. Rather, the similar results between the statistics

of the severe weather parameters and synoptic parame-

ters indicate that, if an outbreak of severe weather will

occur or has occurred, the use of synoptic parameters may

be just as beneficial as using severe weather parameters in

discriminating outbreak type. The utility of synoptic pa-

rameters in diagnosing outbreak type should not be very

surprising. Severe weather parameters generally are de-

rived from, or are combinations of, synoptic parameters

(see Doswell and Schultz 2006).

The HR CIs of MSLP for the original set of cases

contain considerable overlap for the three forecast pe-

riods. This is likely because of the large number of summer

PNO cases in this list of events. Many of the summer

PNOs involve relatively weak synoptic-scale systems (i.e.,

surface cyclones) compared to the TOs. Although forecast

error increases as forecast period increases, the MSLP

fields for the summer PNOs are weaker (magnitudes and

gradients), in general.

This consistent accuracy does not appear in the sta-

tistics for the revised cases. However, MSLP remains

a very useful meteorological parameter to discriminate

outbreaks, especially in 1- and 2-day simulations. There-

fore, the strength and spatial structure of synoptic-scale

systems (viz., for MSLP, the surface cyclone, and sur-

rounding pressure field) provides useful information re-

garding the discrimination of outbreak type. This finding

can be interpreted to support the use of pattern recogni-

tion, at least for highly ranked outbreaks, a common

method for operational forecasters in predicting the po-

tential for severe weather outbreaks (Miller 1972; JD92).

In general, the tilted bootstrap POD (not shown),

FAR (Fig. 5), POFD (not shown), HSS (not shown), and

PSS CIs (Fig. 6) are similar in trend to the HR CIs. Many

of the same conclusions regarding the sensitivities of

these parameters to season, simulation errors, and sim-

ulated convection using HR CIs can be observed with

the POD, FAR, and PSS CIs, as well. Particularly

noteworthy results for these three statistics include 1)

the improvement of FAR for SBCAPE for 2- and 3-day

simulations of the revised set of cases, complementing

the improved HR and PSS with increased forecast pe-

riod; 2) the especially significant degradation in scores

for LCL when using the revised case list, confirming this

parameter’s relatively high sensitivity to seasonal in-

fluences; 3) the relatively higher skill scores of 0–1-km

SREH and MSLP compared to LCL and SBCAPE,

TABLE 4. Meteorological parameters and associated abbreviations as indicated in the text and figures. References are also included where

appropriate.

Severe parameter References

Lifting condensation level (LCL) Rasmussen and Blanchard (1998)

0–1-, 0–3-, and 0–6-km bulk shear (BULK1, BULK3,

and BULK6, respectively)

Bunkers (2002)

0–1- and 0–3-km storm relative environmental helicity

(SREH1 and SREH3, respectively)

Davies-Jones et al. (1990); Davies and Johns

(1993); storm motions based on Maddox (1976)

0–1- and 0–3-km energy helicity index (EHI1 and EHI3,

respectively)

Hart and Korotky (1991); Davies (1993)

Bulk Richardson number shear (BRNSHR) Droegemeier et al. (1993)

Vorticity generation potential (VGP) Rasmussen and Blanchard (1998)

700- and 850-hPa geopotential height (H700 and H850,

respectively)

Storm-relative flow ;2 km AGL (SRFL) Kerr and Darkow (1996)

Supercell composite parameter (SCP) Thompson et al. (2003)

Significant tornado parameter (STP) Thompson et al. (2003)

Mean sea level pressure (MSLP)

Surface-based convective available potential energy

(SBCAPE)

SCB97

Surface-based convective inhibition (SBCIN) Colby (1984)

Level of free convection (LFC) Blanchard (1998)
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providing evidence that wind shear and synoptic pa-

rameters are more skillful when discriminating outbreak

types; and 4) the lack of overall trends in most of the

FAR CIs, which combined with the lack of trends noted

in the POFD CIs (not shown), indicate most degrada-

tion in accuracy and skill scores is through a reduction in

the probability to detect tornado outbreaks.

b. Comparing meteorological covariates

The accuracy and skill with which simulated fields of

numerous meteorological parameters can be used to dis-

tinguish outbreak type vary with the type of parameter,

with the list of cases being analyzed, and with forecast

period. The tilted bootstrap PSS CIs for a number of these

parameters (see Table 4 for abbreviations) for 1-day

simulations of the original set of cases (Fig. 7a) indicate

that storm-relative parameters (e.g., 0–1 km SREH; 0–

3 km SREH; SRFL approximately 2 km above ground

level) and low-level synoptic parameters (such as 850- and

700-hPa geopotential heights and MSLP) appear to be the

most useful parameters in distinguishing outbreak type. In

particular, the CIs for 700-hPa geopotential heights ex-

ceed 80% and do not overlap any other parameter ana-

lyzed for this study. SRFL and 850-hPa geopotential

FIG. 7. Tilted bootstrap CIs for the PSS of 1-day simulations for the (a) original and

(b) revised set of cases for various meteorological covariates. Refer to Table 4 for parameter

abbreviations.

4108 M O N T H L Y W E A T H E R R E V I E W VOLUME 138



heights both exceed 70% and also do not overlap the rest

of the parameters analyzed in the study. The CIs for 0–1-

and 0–3-km SREH do overlap other parameters, in-

cluding LCL, 0–1-km EHI, MSLP, and significant tornado

parameter (STP), but clearly are superior to other severe

weather parameters analyzed [including Bulk Richardson

number shear (BRNSHR); low-level and deep-layer bulk

shear; vorticity generation potential, or VGP; SBCAPE;

surface-based convective inhibition, or SBCIN; etc.]. The

favorable performance of storm-relative helicity param-

eters agrees with many previous studies (e.g., Davies-

Jones et al. 1990; Davies and Johns 1993; Droegemeier

et al. 1993; SCB97; Rasmussen and Blanchard 1998;

Thompson et al. 2003; S09).

Some differences are noted, however, for the PSS CIs

of the 1-day simulations for the revised list of cases

(Fig. 7b). For example, the 700-hPa geopotential heights

no longer have a distinct advantage over any other pa-

rameter analyzed. The CIs for 0–1-km SREH, 0–3-km

SREH, SRFL, MSLP, 700-hPa geopotential height, and

850-hPa geopotential height are relatively similar with

considerable overlap. These 6 parameters are generally

outside the 95% CIs for the remaining parameters, in-

dicating that the observed advantage of these parameters

with the original set of cases remains when modifying the

case list. However, the degradation in the WRF’s ability

to distinguish outbreak type is evident, with the best PSS

CIs only near or slightly above 0.5.

FIG. 8. As in Fig. 7, but for 2-day simulations.
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The skill of LCL also declines considerably (cf. Figs.

7a,b), with its relative utility in distinguishing outbreak

type for the original set of cases all but eliminated when

revising the list of cases to those not occurring in the

summer season. The skill of 0–1-km EHI also decreases

substantially, perhaps in part because of the very poor

skill observed with thermodynamic instability parame-

ters (see section 3a). Finally, the observed skill of several

severe weather indices, including the EHI, supercell

composite parameter (SCP), and STP, in distinguish-

ing outbreak type does not appear to be significantly

better or worse than using other severe weather pa-

rameters (including bulk shear, BRNSHR, etc.) with

1-day simulations.

For the 2- and 3-day simulations, the PSS CIs for the

original set of cases (Figs. 8a and 9a) and the revised set

of cases (Figs. 8b and 9b) feature degradation in the

scores with increased forecast length, with the best PSS

CIs for the original (revised) set of cases decreasing from

0.8 to 0.9 (0.5 to 0.6) for 1-day simulations to approxi-

mately 0.65 to 0.75 (0.4 to 0.5) for 3-day simulations. The

most skillful parameters for the original and revised set

of cases are low-level synoptic parameters (such as 850-

and 700-hPa geopotential heights and MSLP) and storm-

relative helicity parameters (such as 0–1- and 0–3-km

SREH). The least skillful parameters are thermodynamic

instability parameters, such as SBCAPE and SBCIN. The

use of indices (such as EHI, SCP, and STP) appears to be

FIG. 9. As in Fig. 7, but for 3-day simulations.
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more beneficial with longer forecast period, especially for

the revised set of cases, whereas the relative utility with

using SREH degrades with increased forecast period.

The utility of low-level geopotential heights for the

original set of cases degrades significantly for the revised

set of cases, indicating the sensitivity of these parame-

ters to seasonal influences. Finally, the relative benefit of

using LCL as a distinguishing parameter for the original

TABLE 5. Number of correct and incorrect classifications of outbreak type for each of the 1-day simulations of the revised set of cases.

The numbers in each category represent the number of correctly or incorrectly classified outbreak types for the relevant cases. For

example, one ‘‘error TO’’ indicates a TO that is incorrectly classified as a PNO once out of the 1425 tests. Tests included 95 combinations

of meteorological covariates, including parameters individually (95 3 15 5 1425).

Outbreak Error TO Correct Error PNO Outbreak Error TO Correct Error PNO

21 Jan 1999 1411 14 N/A 21 May 1989 N/A 1207 218

27 May 1973 1383 42 N/A 15 Nov 1988 203 1222 N/A

20 Oct 1984 N/A 88 1337 12 Oct 1993 N/A 1222 203

19 Apr 2000 N/A 152 1273 13 Mar 1990 199 1226 N/A

18 Mar 1984 N/A 185 1240 12 Jun 1998 N/A 1231 194

24 Mar 1996 N/A 202 1223 7 Jun 1984 187 1238 N/A

25 Nov 1988 N/A 255 1170 26 Apr 1984 183 1242 N/A

31 May 1985 1153 272 N/A 5 Jun 1985 N/A 1251 174

10 Apr 1995 N/A 337 1088 21 Nov 1992 170 1255 N/A

6 Apr 2001 N/A 349 1076 7 Apr 1980 163 1262 N/A

3 May 1999 1015 410 N/A 2 Apr 1982 160 1265 N/A

17 Apr 1970 945 480 N/A 8 May 1981 N/A 1265 160

8 Apr 1999 933 492 N/A 16 Apr 1990 N/A 1268 157

6 May 2003 928 497 N/A 12 May 1985 N/A 1271 154

14 Feb 1987 N/A 526 899 29 Mar 1976 153 1272 N/A

23 Apr 2000 838 587 N/A 25 Sep 1973 147 1278 N/A

18 May 1996 N/A 606 819 19 Apr 1996 147 1278 N/A

10 Apr 1994 N/A 608 817 10 Nov 2002 130 1295 N/A

4 Nov 1994 N/A 609 816 7 Jun 1993 125 1300 N/A

31 Mar 1993 N/A 623 802 15 Mar 1982 122 1303 N/A

20 Nov 1989 N/A 661 764 24 Feb 2001 121 1304 N/A

14 Jun 2001 N/A 666 759 10 Jun 1992 N/A 1306 119

16 Apr 1998 754 671 N/A 2 Jun 2000 N/A 1309 116

7 May 1993 698 727 N/A 14 Dec 1971 114 1311 N/A

23 Nov 2001 667 758 N/A 10 May 2003 109 1316 N/A

14 Apr 2001 N/A 793 632 1 Mar 1997 106 1319 N/A

2 Jun 1990 628 797 N/A 6 May 1986 N/A 1328 97

26 May 1973 618 807 N/A 28 Apr 1981 N/A 1332 93

26 Apr 1994 591 834 N/A 17 May 1988 N/A 1335 90

13 May 2000 N/A 842 583 2 Jun 1988 N/A 1336 89

2 May 2002 N/A 858 567 2 May 2003 N/A 1339 86

18 May 1995 551 874 N/A 5 May 1996 N/A 1339 86

14 Apr 1984 N/A 888 537 17 May 2001 N/A 1342 83

19 Mar 1992 N/A 964 461 15 Jun 2002 N/A 1343 82

4 May 1977 425 1000 N/A 3 Apr 1974 72 1353 N/A

27 May 1995 409 1016 N/A 10 Apr 1979 71 1354 N/A

31 May 1983 399 1026 N/A 13 May 1999 N/A 1354 71

15 Jun 1992 397 1028 N/A 24 May 1988 N/A 1360 65

8 Jun 1982 N/A 1028 397 24 Nov 2001 62 1363 N/A

9 Apr 2001 N/A 1064 361 22 May 1999 N/A 1367 58

27 Mar 1994 351 1074 N/A 4 Jun 1985 N/A 1369 56

16 Jun 1992 333 1092 N/A 21 May 1987 N/A 1369 56

8 May 1988 302 1123 N/A 24 May 1986 N/A 1376 49

13 May 2003 N/A 1147 278 21 Feb 1971 46 1379 N/A

10 Apr 1981 N/A 1151 274 4 May 1999 46 1379 N/A

20 Mar 1976 259 1166 N/A 7 Jun 1985 N/A 1379 46

26 Apr 1991 254 1171 N/A 28 Mar 1984 43 1382 N/A

10 May 2000 N/A 1178 247 29 May 1998 N/A 1404 21

22 Nov 1992 239 1186 N/A 17 May 1993 N/A 1405 20

4 May 2003 218 1207 N/A 8 Jun 1974 17 1408 N/A
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set of cases becomes a relative disadvantage when ana-

lyzing the revised set of cases, particularly in the 2- and

3-day simulations, confirming this parameter’s sensitiv-

ity to seasonal influences.

4. Complementary subjective analysis

There are several ways to analyze the results subjectively

to complement the objective analyses provided herein,

including the relatively rigorous procedure developed by

S09. Another suitable approach to this problem is to in-

vestigate which cases appear to be distinguished relatively

well by the statistical models developed and which cases

are not distinguished correctly most of the time. Analysis

of these particular model simulations can provide insight

into the parameters most suitable to distinguish outbreak

type and possible sources of error in the prediction of these

events (and relevant meteorological parameters).

As an example, the 1-day simulations for the revised

set of cases will be used to illustrate this type of analysis.

Numerous meteorological parameters, including but

not limited to those listed in Table 4, were tested in-

dividually and in combination to provide 95 sets of tests

to determine the capability of the WRF to distinguish

outbreak type. Because these tests are conducted so that

each case is tested 15 times via cross validation, there

were 1425 classifications for each case. A list of the cor-

rect and incorrect classifications for each case (Table 5)

suggests that, as anticipated, a small number of cases were

incorrectly classified a vast majority of the time, whereas

most cases were classified correctly most of the time.

As indicated in Table 5, the 28 March 1984 TO

(Fig. 10a) and 24 May 1986 PNO (Fig. 10b) were correctly

classified a vast majority of the time. The WRF 1-day

simulations of these outbreaks (Figs. 11 and 12) indicate

correct discrimination should occur with these simula-

tions. The 28 March 1984 TO (which occurred in Georgia,

and North and South Carolina) is forecast to have

very strong southwesterly midlevel flow (.45 m s21 at

500 hPa), an intense surface cyclone (,980 hPa in middle

FIG. 10. Storm reports (gray dots) and the subdomain used for objective evaluation (black box)

for the (a) 28 Mar 1984 TO and (b) 24 May 1986 PNO.
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Tennessee), very high 0–1-km SREH (.400 m2 s22) in

the eastern Carolinas, and low LCLs [,1000 m above

ground level (AGL)] in the same region. However, the

24 May 1986 PNO (which occurred in much of Oklahoma

and Texas) simulation features a very subtle shortwave

trough with weak midlevel (500 hPa) flow in western Texas

and Oklahoma, an approximately 1000-hPa surface cy-

clone in northeast Mexico and southwest Texas, relatively

small values (,100 m2 s22) of 0–1-km SREH, and LCLs

generally above 1000 m AGL throughout the region. The

subjective analysis indicates that TOs are distinguished

from PNOs by forecasts of more intense synoptic-scale

systems, higher low-level shear, and lower LCLs, in ac-

cord with expectations based on previous studies.

However, the 6 May 2003 TO (Fig. 13a) and the

10 April 1995 PNO (Fig. 13b) were classified incorrectly

more than 50% of the time. The WRF 1-day simulations

of these outbreaks (Figs. 14 and 15) explain why such

misclassifications occurred with these cases. For the 6 May

2003 TO, a 997-hPa surface cyclone was forecast in

northeast Oklahoma with 500-hPa southwesterly flow

generally below 35 m s21. LCLs in the region were gen-

erally forecast above 1000 m AGL, and 0–1-km SREH

was only locally high (.300 m2 s22 in southeastern

Missouri) and regionally below 200 m2 s22. With the

10 April 1995 PNO, very strong southerly to southwest-

erly 500-hPa flow was forecast (.45 m s21) with a very

strong (;991 hPa) surface cyclone forecast in northern

FIG. 11. WRF 1-day simulations of the (a) 500-hPa wind speeds (filled contours beginning at 25 m s21 in 10 m s21

increments), geopotential heights (contours in m), and winds (barbs in kt); (b) surface dewpoint temperature (filled

contours beginning at 158C in 28C increments), MSLP (contours in hPa), and winds (barbs in kt); (c) 0–1-km SREH

(filled contours beginning at 100 m2 s22 in increments of 100 m2 s22); and (d) LCL (filled contours beginning at

1500 m AGL in increments of 2250 m AGL) for the 28 Mar 1984 TO.
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Oklahoma. LCLs were low (,1000 m AGL) in regions

not affected by simulated convection occurring in Mis-

souri and Arkansas, and 0–1-km SREH was very high

(.300 m2 s22) in much of Arkansas and Louisiana. In

general, cases more difficult to classify featured charac-

teristics similar to those observed with these two cases.

Possible sources of misclassification included spatial–

temporal errors in the simulations (e.g., 17 April 1970,

27 May 1973, and 31 May 1985), substantial underpre-

diction of strength of synoptic-scale systems for TOs (e.g.,

7 May 1993 and 3 May 1999), overprediction of available

instability (e.g., 6 April 2001), and convective modifica-

tion. See S09 for more details.

5. Conclusions

S09 and M09 suggested that WRF simulations, using

synoptic-scale input, were capable of distinguishing TOs

and PNOs up to three days in advance of the outbreak.

However, subjective analysis of these cases (S09) in-

dicated that PNOs occurring during the times of year in

which TOs most often occurred were relatively difficult

to distinguish. This study investigated the impacts of

changing the PNO cases selected by S09 and M09 to

cases that occurred exclusively during the period of time

in which the sampled TOs were observed, to determine

if outbreak classification was biased toward seasonal

influences. WRF simulations for 1-, 2-, and 3-day simu-

lations of TOs and PNOs were conducted for the set of

cases used by S09 and M09 and for a revised set of PNO

cases occurring outside of the time of year in which no

sampled TOs were observed. Synoptic-scale data were

initialized in the model, to determine the degree to

which processes on these scales influence the occurrence

or absence of tornado outbreaks. Because operational

models cannot resolve tornadoes explicitly, analysis of

FIG. 12. As in Fig. 11, but for the 24 May 1986 PNO.
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the simulated mesoscale environments of the outbreaks

using meteorological covariates was conducted. Nu-

merous meteorological parameter fields were analyzed

subjectively and objectively to compare the model’s

capability of distinguishing outbreak type using the two

sets of cases, to pinpoint which parameters seemed to

be most helpful in making correct discriminations, and

to determine the degree to which these parameters were

influenced by the modified sample of PNOs. In general,

the WRF model simulations, when postprocessed through

the algorithms presented herein, appeared capable of

distinguishing outbreak type consistently when no time

constraint was implemented on the outbreaks. The WRF’s

discrimination capability diminished but remained skillful

when outbreaks were confined to days outside of the

summer season. More specifically:

d Statistically significant degradation in skill was noted

with most meteorological parameters when the PNOs

were modified to include only those occurring outside

of the summer season. Accuracy generally dropped by

at least 5%–10% and skill by 10%–15% for the most

accurate and skillful parameters in distinguishing out-

break type. However, with accuracies greater than 70%

and skill scores greater than 50% for 1-day simulations of

TOs and PNOs outside of the summer season, synoptic-

scale processes still appear pertinent in discriminating

tornadic and primarily nontornadic outbreaks.
d Helicity parameters (0–1- and 0–3-km SREH) and

synoptic parameters (such as low-level geopotential

heights and MSLP) appeared to be most consistently

helpful (highest accuracy and skill, in general) in dis-

tinguishing outbreak types.
d Thermodynamic instability parameters (e.g., SBCAPE

and SBCIN) were not useful for discrimination.
d The LCL fields appeared to be especially susceptible to

the time of year in which the outbreaks occurred. Overall,

accuracy scores dropped from 15% to 20% when the

PNOs were constrained to the same time of year as the

TOs, and skill scores dropped by as much as 30%.

FIG. 13. As in Fig. 10, but for the (a) 6 May 2003 TO and (b) 10 Apr 1995 PNO.
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d As observed in S09, the strength and spatial structure

of synoptic-scale systems was observed to be crucial

in distinguishing outbreak type for numerous cases.

Miller’s (1972) A, B, and D map types commonly fa-

vored TOs, whereas the C and E map types favored

PNOs. Cases that tended to be misclassified often

featured weaker (stronger) synoptic-scale systems for

TOs (PNOs).
d Several index parameters (including EHI, SCP, and

STP) exhibited comparable skill in distinguishing

outbreak type to low-level storm-relative parameters

and synoptic parameters. The value of indices is rel-

atively higher with increasing forecast time.
d Forecast degradation was common from 1- to 3-day

simulations. Whereas the most skillful parameters

featured PSSs greater than 0.5 for 1-day simulations

for the revised set of cases, few parameters scored

values above 0.4 for 3-day simulations.

A key goal of this research is to implement the tech-

niques developed by S09, M09, and this study in an op-

erational setting; however, our study is diagnostic and

should not be interpreted as a forecasting study. Four

topic areas must be investigated before implementation

in an operational environment can begin. The WRF

simulations were analyzed where the outbreaks actually

occurred, not where the model forecasted the outbreak

to occur. Objective determination of the model’s fore-

cast outbreak location is difficult for a number of rea-

sons. For example, it is possible that the model will not

initiate deep convection for outbreak cases (see S09).

Furthermore, severe convection does not always develop

in the same location relative to particular synoptic-scale

features (such as the location of the surface cyclone).

An ‘‘objective’’ choice of model outbreak location will

inevitably be subjective in nature because of these

complications and may introduce biases into any type

FIG. 14. As in Fig. 11, but for the 6 May 2003 TO.
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of objective classification. However, objective de-

termination of a model simulation’s outbreak location

must be explored if the techniques developed in S09,

M09, and in this study are to be utilized in an operational

environment. Without this determination, it would be

problematic to know the actual geographical center of

a simulated outbreak. Of course, a simulated outbreak

might not coincide in space and time with any actual

severe weather outbreak that might occur.

Another complication is the ‘‘outbreak–no outbreak’’

question. This study only considers cases for which it is

known a priori that an outbreak occurred. The de-

termination of whether a particular synoptic-scale sys-

tem will produce a severe weather outbreak is beyond

the scope of this study. There is no guarantee, for ex-

ample, that an outbreak will occur given a particular

synoptic-scale system, even from those that appear

‘‘synoptically evident’’ (Doswell et al. 1993; Doswell and

Bosart 2001). Research investigating the differences in

synoptically-evident environments that produce out-

breaks versus those that do not would greatly benefit the

severe weather forecasting community.

A recent study investigating the utility of SVMs in

discriminating tornadic and nontornadic storms using

radar data (Trafalis et al. 2009, manuscript submitted to

J. Commun. Network Syst. Sci.) suggests the tacit as-

sumption that a balanced training ratio (i.e., 50% of

cases are tornadic and 50% are nontornadic) does not

necessarily provide the best results when applying the

statistical models to an independent testing set. Ac-

cordingly, there is a need to conduct experiments with

an incremental range of percentages of tornadic storms

(Adrianto et al. 2006). Analysis of the capability of the

WRF model, using SVMs or other postprocessing algo-

rithms, to distinguish TOs from PNOs should be con-

ducted in such a manner for the two types of outbreaks to

FIG. 15. As in Fig. 11, but for the 10 Apr 1995 PNO.
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determine if improved discrimination can be attained

using unbalanced training sets.

Finally, most outbreaks of severe weather fall ‘‘be-

tween’’ the TO and PNO classifications. In order for

forecasting to benefit from the research presented herein,

accounting for and properly discriminating these events

from TOs and PNOs will be necessary. Furthermore,

some synoptic-scale systems may be forecast to produce

an outbreak but do not do so. Investigating these cases

will be necessary to develop a set of null events. Cur-

rently, research is ongoing to account for these cases.
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