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ABSTRACT 
 

Forecaster perceptions of major convective outbreaks include the notion that these events occur within 
relatively large regions of meteorological conditions favorable for the development of significant severe 
weather, particularly tornadoes.  With recent studies developing a rigorous and scientifically repeatable 
method of identifying these events and distinguishing them from intermediate or marginal severe weather 
outbreaks, the investigation of a large sample of these events now is possible.  This diagnostic study aims 
to determine the extent to which the use of areal coverage is successful as a means of discriminating major 
severe weather outbreaks (primarily but not exclusively major tornado outbreaks) from the less significant 
outbreaks.  Preliminary findings suggest that the areal coverage of severe weather parameters favorable for 
severe weather indeed is associated with the severity of outbreaks.  However, the method produces a 
substantial number of less significant outbreaks that are misclassified as major severe weather outbreaks.  
Many of these false alarms can be identified by the presence of synoptic environments that are less 
favorable for the development of a large number of tornadoes.  However, a substantial number of 
intermediate and marginal severe weather outbreaks feature synoptic patterns and mesoscale environments 
that are difficult to differentiate from the major events.  Limitations of using areal coverage as a means of 
outbreak discrimination are discussed, and refinements to account for these limitations are proposed.   

 
–––––––––––––––––––––––– 

 
1.  Introduction 

 
Predicting the relative severity of convective 

outbreaks remains one of the primary challenges 
for operational severe weather forecasters.  As 
operational models are not capable of resolving 
tornadoes explicitly, and are not expected to do 
so in the near future, forecasters must rely on the 
forecast fields of meteorological parameters 
associated with various types of severe weather 
(known as covariates; see Brown and Murphy 
1996), simulated convection and forecast 
convective mode from high-resolution model 
simulations, short-term forecasting based on 
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current observations, and experience with 
subjective perceptions of similar past events. 
Many studies have investigated the utility of a 
variety of severe weather parameters to 
distinguish storm modes, significance of severe 
weather, or types of severe weather (e.g., Davies-
Jones et al. 1990; Davies and Johns 1993; Johns 
et al. 1993; Brooks et al. 1994; Stensrud et al. 
1997; Rasmussen and Blanchard 1998; Brooks et 
al. 2003b; Doswell and Evans 2003; Markowski 
et al. 2003; Thompson et al. 2003, 2007; Potvin 
et al. 2010).  These studies have focused 
primarily on storm environments, using observed 
or model-derived proximity soundings.  Notable 
exceptions include Stensrud et al. (1997; model 
forecast fields) and Brooks et al. (2003b; 
reanalysis data), but the focus of these studies 
has remained primarily on storm environments.  
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Research on severe convective outbreaks 
mostly has been based on case studies (e.g., 
Fujita et al. 1970; Fujita 1974; Johns and Hart 
1993; Thompson and Edwards 2000; Corfidi et 
al. 2010).  Although much has been learned 
about the environments in which these outbreaks 
occur and the challenges of forecasting these 
events (Johns and Doswell 1992; Doswell et al. 
1993; Doswell and Bosart 2001; Moller 2001), 
the number of studies is surprisingly limited 
regarding the investigation of using various 
severe weather parameters in the identification of 
particular types of outbreaks. 

 
One of the challenges of outbreak 

discrimination is the identification of 
prototypical cases.  Doswell et al. (2006) 
proposed an objective scheme to rank tornado 
outbreak and primarily nontornadic outbreak 
days using a linear-weighted multivariate index.  
The definition of a major outbreak in this study 
is based on a variation of this ranking scheme 
developed by Shafer and Doswell (2010—
hereafter, SD10) that has been shown to be 
consistent with subjective assessment of 
numerous outbreak events.  For a complete 
description of the outbreak ranking scheme, the 
limitations of the dataset used for the rankings, 
and the characteristic cases considered to be 
major outbreaks and for those considered not to 
be, the reader is referred to SD10.1

 
Shafer et al. (2009; 2010―hereafter, S09; 

S10) and Mercer et al. (2009―hereafter, M09) 
investigated the ability of mesoscale models to 
discriminate tornadic and primarily nontornadic 
outbreaks initialized with synoptic-scale data by 
analyzing forecast meteorological fields.  These 
studies considered a relatively large number of 
cases, thereby reducing the impact of small 
sample size limitations of previous outbreak 
studies (Doswell and Schultz 2006; Doswell 
2007).   

 
As S09 and M09 concluded, consistent, 

skillful discrimination of tornadic and primarily 
nontornadic outbreaks appears to be possible at 
least three days in advance of the outbreak.  
Given the success of these initial investigations, 
it is now reasonable to consider cases that are not 
easily classified as either type.  Most convective 
outbreaks feature a mix of severe reports (SD10). 
Consequently, operational forecasters commonly 

                                                           
1 This study is based on the work of SD10.  As a 
result, it is recommended that readers consult 
SD10 before this study. 

face the task of determining which outbreak days 
will be of this “intermediate” type.  Major severe 
weather outbreaks primarily consist of major 
tornado outbreaks, though a few cases feature a 
notable lack of tornadoes (high-impact derechos 
or widespread significant hail events).  
Intermediate cases feature a small to moderate 
number of tornadoes and a large number of 
nontornadic reports, or lower-impact primarily 
nontornadic outbreaks.  Marginal events were 
also included in SD10, which are events with 
substantial geographic scatter or multiple 
regionally-separate clusters of severe reports.   
The reader is referred to SD10 (their Section 3b) 
for a more thorough description of these types of 
events.  In this paper, intermediate and marginal 
outbreaks will be considered as one category 
(null events).  Section 2 discusses how these 
events are classified in more detail. 

 
To select intermediate outbreak days in a 

classification study, the work of Doswell et al. 
(2006) was modified by including any type of 
outbreak (specifically, the top 30 days of each 
year from 1960-2006, based on the total number 
of severe reports) by SD10.  The new indices 
developed by SD10 revealed that a small 
proportion (~200) of the 1410 cases included in 
their study could be classified as major severe 
weather outbreaks (see their Fig. 6), whereas the 
remaining cases were intermediate or marginal. 

 
There are many possible methods for 

objectively evaluating the ability of 
meteorological covariate fields to discriminate 
the major outbreak days from the intermediate 
and marginal outbreak days (e.g., see M09).  A 
relatively simple approach is to consider only the 
areal coverage of several diagnostic variables at 
the valid times of the outbreaks.  Forecaster 
perceptions of convective outbreaks suggest that 
the subsynoptic environments on these days are 
favorable for severe weather over relatively large 
regions, whereas localized severe weather is 
associated with a favorable environment only in 
a relatively small region.  S09 illustrated the 
utility of examining areal coverage in the 
subjective discrimination of tornadic and 
nontornadic outbreaks (their Section 3), in which 
the environments favorable for tornadoes 
systematically covered a much larger area with 
tornado outbreaks than for primarily nontornadic 
outbreaks. 

 
Previous studies focusing on using 

covariates to discriminate storm modes or severe 
weather types show a pronounced “false alarm 
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problem” (e.g., Rasmussen and Blanchard 1998; 
Thompson et al. 2003).  Specifically, the 
discrimination of tornadic supercells from 
nontornadic supercells resulted in a large number 
of nontornadic supercells being classified as 
tornadic supercells.  Rasmussen and Blanchard 
(1998) discussed this problem at length, 
proposing at least three possible reasons.  (1)  
Large-scale factors that exhibit characteristics 
favorable for tornadoes may be represented 
adequately, but factors unfavorable for their 
development may not be.  (2)  The convective 
mode often has profound implications on the 
type of severe weather that is observed and likely 
does not correspond well with most severe 
weather parameters.  (3)  Large-scale conditions 
almost never represent the storm-scale 
environment (see Markowski et al. 1998a,b for a 
discussion).  Although these problems have 
arisen in considering individual storm 
environments, rather than outbreaks, it is 
reasonable to expect these possible inhibiting 
factors to affect discrimination of outbreak types 
as well.  Thus, before investigation of a 
mesoscale model forecast’s ability to 
discriminate major convective outbreaks from 
the intermediate and marginal outbreak days, it is 
worthwhile to determine the ability of analysis 
data valid at the time the outbreaks were 
occurring to discriminate outbreak type.  This is 
the focus of the present work. 

 
Section 2 describes the data and methods 

incorporated in our study, and Section 3 presents 
the results.  Section 4 provides some subjective 
interpretations of the results, including the 
limitations inherent in an “areal coverage” 
approach.  Section 5 provides a discussion of the 
current work’s implications and offers potential 
topics for future investigation. 

 
2.  Data and methods 

 
To analyze the mesoscale fields of 

meteorological parameters at the valid times of 
a large number of outbreak days, the North 
American Regional Reanalysis dataset (NARR; 
Mesinger et al. 2006) was used in this study.  
The NARR dataset is available from 1 January 
1979 to the present.  Horizontal grid spacing is 
32 km, with 45 vertical layers.  These regional 
reanalysis data showed significant improvement 
in temperature and wind fields compared to 
global reanalysis datasets (For more details  
please see the PowerPoint™ presentation at 
http://www.ejssm.org/ojs/public/vol5-7/narr.ppt.) 

and are available for relatively long periods of 
time compared to other datasets, such as the 
RUC, making selection of the NARR preferable.  
The long period of time is critical, as even with a 
relatively large sample used in this study, sample 
size issues remain (see Section 3).  

 
The reanalysis data were converted via 

bilinear interpolation to a 300×200 18-km 
horizontal grid, with 31 vertical levels, using the 
Weather Research and Forecasting model’s 
Preprocessing System (WPS) Version 3.1 
(Skamarock et al. 2008).  This conversion was 
made for direct comparison with previous and 
future model simulations of the 18-km domain 
used for objective analysis of outbreak 
classification (see S09; M09; S10).  The domain 
covers the contiguous United States and is not 
shifted for any outbreak day.  Each of the 30 
outbreak days for every year from 1979 to 2006 
considered in SD10 was analyzed for this study.  
The outbreak days were split randomly into a 
training set of 630 cases and a testing set of 210 
cases.2  Analysis of the meteorological fields 
included the same variables as used in previous 
work (S09; M09; S10). 

 
The total number of grid points in the 

300x200 domain that exceeded a threshold value 
for a particular parameter was used to measure 
the areal coverage of any parameter considered 
to be favorable for a major severe weather 
outbreak.  The grid point sums then were 
compared for each outbreak day (Section 3), 
using individual and combined fields (that is, 
univariate and multivariate sums).  Additionally, 
pseudo-trajectories were computed as another 
means of describing the severe weather 
environment.  These pseudo-trajectories are 
intended to approximate how long it would take 
a storm to traverse the area wherein the 
environment is deemed to be favorable.  This 
method determines backward and forward 
trajectories at each grid point, using the wind 
speed and direction at 500 hPa, within the 
enclosed area in which the parameter analyzed 
exceeded the predetermined threshold.  The 
500-hPa wind is acknowledged to be only a 
crude estimate of storm motion, but it suffices to 
compare each outbreak to the others. 

 
Several classification algorithms were 

considered, including linear and quadratic 

                                                           
2 See Section 3b for details on the selection of 
the number of training and testing cases. 
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discriminant analysis (Seber 1984; Krzanowski 
1988), decision trees (Breiman et al. 1993), and 
support vector machines (SVMs; Cristianini and 
Shawe-Taylor 2000), to determine if any of the 
algorithms used had a distinct advantage or 
disadvantage in discriminating cases or if the 
results were consistent among the algorithms.  
Three methods of interpreting the statistical results 
were conducted:  (1)  The entire training set was 
used to develop a statistical model, and this model 
was run independently on the test data.  Bootstrap 
confidence intervals (Efron and Tibshirani 1993) 
of contingency statistics (Wilks 1995) were 
computed for the results of the testing data.  (2)  
The training set was converted randomly to 25 
subsets, in which 63 (10%) of the 630 training 
cases were removed in each subset (i.e., 567 cases 
per subset).  Removing a larger proportion of 
cases led to reduced accuracy and skill in 
discriminating the remaining cases, whereas 
removing a smaller proportion of cases led to 
substantially larger uncertainty of the statistics 
(not shown).  These 25 statistical models were 
assessed using the testing data, and the 
contingency statistics were analyzed.  Techniques 
(1) and (2) were conducted to determine the 
uncertainty in the contingency statistics of the 
testing data and the variability of the training 
models for the same test data, respectively.  (3)  
Additional analysis was conducted by adjusting 
incrementally the grid point sum or the total or 
mean time, distance, or speed of a storm’s pseudo-
trajectory for those points exceeding a particular 
threshold value of a severe weather parameter.  
This method provides analysis on what grid point 
thresholds may be most accurate and skillful for 
outbreak discrimination and permits simple 
interpretation of the results.  

 
SD10 developed 26 multivariate linear-

weighted indices (identified by the labels N0-
N25) to rank outbreaks of any type.  The indices 
used 14 different types of severe report variables 
(directly or derived from the Storm Prediction 
Center severe weather database; see Schaefer 
and Edwards 1999; see also SD10, their Table 
1).  Each severe report variable was converted to 
standard normal (Eqs. [1]–[3], Doswell et al. 
2006), to prevent undue weight being given to 
the parameters with large magnitudes.  
Additionally, nonmeteorological artifacts are 
known to be present in the severe weather 
reports data (Brooks et al. 2003a; Doswell et al. 
2005; Verbout et al. 2006).  Although we have 
accounted for some of this by detrending the data 
in time (SD10), there is no way to account for all 

of these artifacts.  Among other things, this adds 
an element of uncertainty to our results, the 
details of which cannot be known, but there is no 
perfect database to use for our purposes.   

 
The scores of the 26 indices then were 

computed by taking the weighted sums of the 
severe report variables and dividing by the sum 
of the weights (as in Eq. [4], Doswell et al. 
2006).  The 26 indices differed by modifying the 
weights of the severe report variables, in 
accordance with subjective notions of the 
relative significance of the various types of 
reports (see Section 3a of SD10 for more 
discussion).  Indices N0–N16 and N20 featured 
nonzero weights for all of the variables, whereas 
indices N17–N19 and N21–N25 featured zero 
weights for six of the eight tornado report 
variables.  This latter point will be discussed 
further later in this section. 

 
The characteristic curve of the scores of the 

indices developed by SD10 is similar to the 
curve from an uncorrelated series of random 
numbers with standard normal distributions (Fig. 
1; see also section 3a and Fig. 6a of SD10 for 
more discussion).  This is because the indices 
included 14 variables that were standardized.  
Based on its definition, the variance of an 
uncorrelated series of 14 standard normal 
variables is 14 (whereas the mean remains zero).  
However, each of these variables was given a 
weight wi, and the sum of the weighted variables 
was divided by the sum of the weights.  Thus, 
each variable xi had a coefficient ai, where: 
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For uncorrelated variables, the covariance term 
in Eq. (2.2) is zero, and from Eq. (2.1), the 
variance of the linear equally-weighted average 
of 14 uncorrelated variables is (1/14) = 0.0714. 
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from intermediate or marginal outbreak days, 
where the latter included cases with scores below 
the value of -1.  We by no means are stating that 
these values are the most appropriate, however.  
Indeed, selecting various thresholds to examine 
differences in diagnosing outbreak severity is 
appropriate. Discussion regarding shifting the 
index threshold, and the subsequent effects on 
diagnosing outbreak classification using areal 
coverage, will be addressed in Section 3b. 

 

 
The N15 and N25 indices were used for 

outbreak classification because of the differences 
in the number of tornado report variables 
included as weights for the indices.4  
Specifically, N15 incorporates eight variables 
(the total number of tornadoes, the total number 
of F2 or greater tornadoes, the total number of 
F4 or greater tornadoes, the destruction potential 
index [DPI; Thompson and Vescio 1998], the 
total path length, the number of killer tornadoes, 
the total number of fatalities, and the number of 
long-track tornadoes), whereas N25 only 
includes the total number of tornadoes and the 
DPI (SD10, their Fig. 4).  Both indices include 
six additional severe report variables (the total 
number of all reports, the total number of wind 
reports, the total number of hail reports, the total 
number of significant wind reports, the total 
number of significant hail reports, and the 
middle-50% parameter―a parameter designed to 
account for geographic scatter with the reports).  
The scores for each of the 840 case days (e.g., 
N25 in Fig. 1) follow the characteristic curves 
shown in SD10 (their Fig. 6a).   

Figure 1:  Plot of the values of the N25 index 
scores for the 840 cases considered in the current 
study.  Click image to enlarge. 

 
However, the variables used to determine 

the outbreak rankings in SD10 are correlated, 
and generally strongly positively correlated (see 
their Table 2).  As the correlation is the 
covariance of two variables divided by the 
product of their individual standard deviations 
(which is 1, as the variables are standard 
normal), the covariance term in Eq. (2.2) is 
positive.  Thus, the variances of the index scores 
are higher than the variance of the equally-
weighted uncorrelated series.3  In general, these 
variances were near or slightly larger than 1.  In 
SD10, cases above scores of 1 (i.e., the mean 
plus the standard deviation, approximately) were 
primarily tornado outbreaks, whereas the cases 
below this threshold generally were not.  This 
was by design, as the indices weighted the 
tornado variables highest.      

 3.  Results 
The threshold value of 1 also was supported 

by a three-class k-means cluster analysis (see 
Gong and Richman 1995) of the multivariate 
indices (not shown).  For example, using the N25 
index, the three classes were separated by the 
scores of 1.10 and -1.15.  For the other indices, 
these values similarly were found to be near 1 
and -1.  Because of the aforementioned findings 
and because the cases were not completely rank-
invariant (leading to some cases being classified 
as major outbreaks for some indices and 
intermediate for others; see SD10), the value of 1 
initially was selected to separate major outbreaks 

 
a.  The need for additional constraints 
 
Initially, the areal coverage of a particular 
combination of severe weather parameters was 
computed with no preexisting criteria for a grid 
point’s inclusion in the computation.  A case-
by- case determination of the areal coverage 
values for a variety of meteorological parameters 
(Fig. 2) indicated several important 
characteristics:  

                                                                                                                      
3 There are other reasons for this increase as 
well, including unequal magnitudes of the 
weights for the 14 variables and the treatment of 
one of the 14 variables separately from the 
remaining 13 (the middle-50% parameter; see 
SD10 for more details). 

4 The selection of N15 and N25, besides the 
differences in the number of tornado report 
variables used as weights for outbreak ranking, 
was essentially arbitrary.  There is no obvious 
preference to any of the indices developed by 
SD10, as their Section 5 discusses. 
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Figure 2:  Number of grid points exceeding a) a threshold value of 1 for STP, b) a threshold value of  
1000 J kg-1 SBCAPE and a threshold value of 100 m2 s-2 for 0–1 km SREH, c) a threshold value of 60 000 
for the product of SBCAPE (J kg-1) and 0-6 km bulk shear (kts), and d) a threshold value of 20 000 for the 
product of SBCAPE (J kg-1) and SRFL (m s-1), for each of the 840 cases.  Cases ranked in order from 1 to 
840 using the N15 index.  Major (intermediate or marginal) outbreaks are indicated by red (blue) dots. 
Click image to enlarge. 

 
• The highest-ranked outbreak days tended to 

have a higher number of grid points 
exceeding a threshold value for a certain 
subset of parameters.  Subjective analysis 
suggests that the “best” discrimination of 
major outbreaks from intermediate and 
marginal outbreak days used either (1) the 
significant tornado parameter (STP, after 
Thompson et al. 2003) values ≥1 (Fig. 2a), 
(2) a combination of surface-based (SB) 
CAPE ≥1000 J kg-1 and 0–1 km storm-

relative environmental helicity (SREH) 
≥100 m2 s-2 for each grid point (Fig. 2b), or 
(3) 0-1 km AGL energy helicity index (EHI, 
after the Rasmussen 2003 version) values ≥1 
(not shown).  That is, the performance of 
these covariates was very similar.  On the 
other hand, some areal coverage parameters 
showed negligible capability distinguishing 
outbreak days (e.g., the product of SBCAPE 
and 0-6 km AGL bulk shear (BULK6) 
exceeding 60 000 (J kg-1)(kts), Fig. 2c; or 
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the product of SBCAPE and ~2 km above 
ground level storm-relative flow (SRFL) 
exceeding 20 000 m3 s-3, Fig. 2d).  Based on 
this analysis, the remainder of this paper 
uses STP for evaluation of the areal 
coverage technique.5 

• There is a high level of scatter in the data, 
suggesting that this method is subject to 
substantial limitation in determining the 
relative severity of outbreak days.  In 
particular, a statistical model’s ability to 
predict the index score is likely to be 
limited. 

• Several intermediate and marginal outbreak 
days are seen to have comparable values of 
total grid points exceeding a threshold for 
various severe weather parameters to those 
of major outbreak days. 

• Very few cases exhibited noncontiguous 
regions of parameters exceeding thresholds.  
Thus, no effort was made to account for this 
tendency in subsequent analyses. 
 
Examination of several “false alarm” days 

showed that the unconstrained initial calculations 
of favorable areas were susceptible to a number 
of undesirable characteristics:  (1)  A large 
number of water points (e.g., the adjacent 
Atlantic Ocean, Gulf of Mexico, Great Lakes, 
etc.) exceeded the specified thresholds.  As 
severe reports are archived only over land, points 
over water could not be verified to have 
experienced severe weather, so water points are 
not considered hereafter.  (2)  Several severe 
weather indices [e.g., EHI, the supercell 
composite parameter (SCP, after Thompson et al. 
2003), STP] appeared to be exceptionally high 
on days with very large values of CAPE.  These 
values were high despite relatively unfavorable 
values of shear or helicity (e.g., Fig. 3).  As a 
result, only grid points in which SBCAPE  
≥1000 J kg-1 and 0–1 km SREH ≥100 m2 s-2 were 
considered in some subsequent calculations of 

                                                           

                                                          

5 Other parameters were analyzed, including 
EHI, and the combination of CAPE and SREH, 
but results were similar or worse than those of 
STP.  Thus, STP is used throughout the rest of 
the paper to illustrate the advantages and 
disadvantages of using the areal coverage 
technique.  However, CAPE and SREH are 
used as additional constraints in some areal 
coverage calculations, as this section will later 
discuss. 

areal coverage thresholds.6  (3) On some days 
with multiple clusters of severe reports or with 
large geographic scatter in the reports, there were 
large regions of favorable severe parameters.  
The additional CAPE and SREH thresholds 
incorporated as a result of (2) seemed to 
diminish this problem to a degree, but days with 
multiple clusters of reports were sometimes 
unaffected.  Moreover, these days were 
predominantly responsible for any 
noncontiguous regions of favorable parameters 
for significant severe weather.  As SD10 noted, 
more rigorous techniques to account for these 
days are likely necessary when developing an 
index to rank outbreak days (see their discussion 
on the “middle-50% parameter”).  In Section 5, 
one possible method to be incorporated in future 
research is proposed. 

 
Not surprisingly, the incorporation of the 

additional constraints also contributed to a 
lowering of the grid point sums for some of the 
major severe weather outbreaks.  A larger 
number of “misses” should be expected with any 
constraint implemented in the inclusion of points 
exceeding a particular threshold for specified 
variables.  Moreover, implementing the 
constrained STP did not reduce adequately the 
excessive scatter in the values (not shown), as a 
large number of intermediate and marginal 
outbreak days maintain values of areal coverage 
comparable to the major outbreak days.  As a 
result, both constrained and unconstrained 
calculations of STP are used in subsequent 
analyses in this paper. 

 
When considering pseudo-trajectories for 

each point within the area in which the 
unconstrained STP ≥1, we computed the sum of 
the distances for each grid point storm, the mean 
distance of the hypothetical storms, the mean 
speed of storm motion, and the time required for 
the mean hypothetical storm to enter and exit the 
favorable region.  The results illustrated similar 
characteristics to those shown in Fig. 2.  The 
lengths of the trajectories (sum and mean) were, 
in general, larger for major severe weather 
outbreaks than for intermediate and marginal 
outbreaks.  Storm motions were somewhat faster 
for major outbreaks, and the time required for a

 
6 Hereafter, any time the water and CAPE/SREH 
constraints are added to the STP threshold, this 
will be referred to as the constrained STP.  If 
only the water points are eliminated, it will be 
referred to as the unconstrained STP. 
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Figure 3:  NARR fields of a) SBCAPE (J kg-1), 
b) 0–1 km AGL SREH (m2 s-2), and c) 0–1 km 
AGL EHI, valid at 0000 UTC 30 August 1984.  
Click image to enlarge. 
 
hypothetical storm to traverse the favorable area 
appeared to be slightly longer for major outbreaks.  
The storm motion and time of the mean 
trajectory to traverse the favorable area did not 
decline substantially, however, as the ranking 
(severity) of the outbreak decreased.  Once 
again, there was substantial scatter in the results, 

and there still was a large number of 
intermediate and marginal cases with similar 
values to those of major severe weather 
outbreaks. 

 
b.  Results using incremental thresholds 

 
A simple technique to measure the accuracy 

and skill of using areal coverage as a criterion for 
outbreak discrimination is to change the 
thresholds incrementally, from small to large 
values, and to compute contingency statistics for 
these thresholds.  The following analysis 
includes all 840 cases.  However, later in this 
section, training and testing sets are created, and 
more advanced statistical algorithms are 
incorporated into the analysis.  An overview of 
contingency statistics is provided in Wilks 
(1995), and the standard binary contingency 
variables a (correct hits), b (false alarms), c 
(misses), and d (correct nulls) will be used in the 
following discussion.  Equations for the binary 
statistics employed in the following discussion 
are: 

N
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Figure 4:  a)  Roebber (2009) diagram, using the total number of land grid points for the constrained STP 
≥1 for diagnosis of outbreak type and the N25 index for outbreak classification.  Bias is shown using 
diagonal black lines (with the blue line showing a bias of unity).  Red curves indicate CSI. Individual 
points indicate grid point thresholds in increments of 100, starting from 0 (blue) to 5000 (maroon). b)  Hit 
rate (blue), probability of detection (red), false alarm ratio (green), probability of false detection (magenta), 
and critical success index (black) of the grid point thresholds specified on the x-axis.  c)  Relative operating 
characteristics (ROC) diagram for each of the grid point thresholds, as in (a).  d)  Pierce (blue), Heidke 
(red), Clayton (green), and Gilbert (magenta) skill scores for each of the thresholds in (b). Click image to 
enlarge. 
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where N is the sum of each of the components of 
the contingency table and 

)).)(())(((1 dbdcbaca
N

Ec +++++=  

(3.11) 
 

The preceding equations are the hit rate 
(HR), probability of detection (POD), false alarm 

ratio (FAR), success ratio (SR), probability of 
false detection (POFD), critical success index 
(CSI), Pierce skill score (PSS), Heidke skill 
score (HSS), Clayton skill score (CSS), and 
Gilbert skill score (GSS).  These four skill 
statistics were chosen because of their different 
properties in rare-events datasets (e.g., Doswell 
et al. 1990), the inclusion or exclusion of the 
“correct null” category (i.e., GSS―see Murphy 
1996), the property observed by Richardson 
(2000) that the maximum value of a 2×2 decision 
problem is given by the PSS for a complete 
range of users, and the property observed by 
Wandishin and Brooks (2002) that the CSS can 
pinpoint when forecasts no longer have value.   

 
As an example of the proposed technique, 

the total number of grid points in which the 
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Figure 5:  As in Fig. 4, using the mean hypothetical storm distance in the area through which the 
unconstrained STP ≥1. Click image to enlarge. 
 
discriminating parameter, with the N25 index 
used for the classification of outbreak type 
(Fig. 4).  The major severe weather outbreaks 
generally have a higher number of favorable grid 
points than the marginal outbreak days, with a 
considerable overlap observed with the 
intermediate outbreak days.  As the threshold 
number of grid points is increased in increments 
of 100 from 0 to 5000, the HR increases, the POD 
decreases, the FAR decreases, and the POFD 
decreases.  The FAR is quite large (>0.6 up to a 
threshold of 1500 grid points) and exceeds the 
POD for grid point thresholds of 1200 or more, in 
agreement with the subjective analysis discussed 
in Section 3a.  

 
The POFD becomes quite small with 

increased threshold, as a consequence of (a + c) 
<< (b + d), (a + b) decreasing, and (c + d) 
increasing.  The inequality is true because the 
dataset is highly imbalanced (i.e., the number of 
intermediate/marginal outbreak days (b + d) far 
exceeds the number of major outbreak days  
(a + c)).  Specifically, for the N25 index, 130 

out of 840 days are considered major outbreaks.  
As the threshold number of grid points is 
incrementally increased, both a and b (c and d) 
decrease (increase) by design.  However, 
because b << d with increased threshold, the 
POFD decreases rapidly in the small-to-
moderate portion of the thresholds, as a large 
number of correct nulls are associated with a 
small number of grid points exceeding the 
favorable threshold.  The POD, on the other 
hand, remains comparatively large within the 
small thresholds, as c << a.  As a result, the 
PSS can become quite large compared to other 
skill statistics when using a low threshold to 
discriminate the outbreak types. 

 
The discussion above illustrates a potential 

drawback of using the PSS for this dataset.  The 
PSS can be quite large for classifications with a 
large number of false alarms (high FAR) and 
consequently a large positive bias (Fig. 4a).  As 
b << (b + d) for increasingly large thresholds, b 
can be quite large despite a relatively high PSS.  
Some skill statistics (such as the HSS) do not
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Figure 6:  As in Fig. 5, with outbreak classification modified by using the N15 index rather than the N25 
index. Click image to enlarge. 
  
exhibit this tendency (see Doswell et al. 1990 for 
a discussion).   
 

The above discussion assumes that the cost 
of a miss is equal to the cost of a false alarm, 
which is not necessarily true.  The choice of skill 
statistics requires careful consideration when the 
costs of false alarms and misses are not 
equivalent.  For example, generally the cost of 
false negatives is assumed to be higher than that 
of false positives (see, e.g., Doswell 2004).  
Although the cost of false positives is certainly 
nonzero, as preparatory efforts by emergency 
management and weather forecast agencies could 
be costly and a false-alarm effect (Breznitz 1984) 
may exist, false negatives may lead to increased 
casualty rates as a result of inadequate 
preparation and public awareness.  Thus, even 
though the CSI, HSS, and GSS tend to be highest 
at grid point thresholds in which the bias is near 
unity (see Figs. 4a,b,d), diagnoses may be 
preferred to have a large positive bias, as the 
POD is higher at these thresholds with relatively 
little decrease to the CSI, HSS, and GSS but a 

large increase in the FAR.  See Murphy (1977), 
Katz and Murphy (1997), Roebber and Bosart 
(1998), Briggs (2005), and references within for 
more discussion of forecast value. 

 
The contingency statistics computed in 

Fig. 4 are remarkably similar to previous work 
discriminating storm types.  Thompson et al. 
(2003) described the utility of STP in 
discriminating tornadic and nontornadic 
supercells, using POD, FAR, CSI, and PSS (their 
Fig. 19).  They found that the FAR was very 
high (>0.6 for all values of STP ≤4), with the 
POD becoming less than the FAR, as STP was 
increased to values greater than unity.  The PSS 
was relatively high (>0.4) for an STP threshold 
of 1, with a CSI much lower (<0.3) that peaked 
at higher thresholds.  Similarities of the results in 
this study with those of studies focusing on 
storm discrimination suggest the accuracy and 
skill when using severe weather parameters in 
diagnosing outbreak types may be limited in a 
comparable way to studies attempting to 
discriminate storm types. 
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Figure 7:  a)  Same as Fig. 6d.  b), c), d) As in (a), with the N15 index threshold, used to discriminate major 
from intermediate and marginal outbreak days, changed to 0.75, 0.5 and 0.25 respectively. Click image to 
enlarge. 

 
The statistics exhibit only limited changes if 

the threshold criteria for diagnosing outbreak 
type are altered, or if the actual outbreak type is 
defined using different criteria (see below).  For 
example, changing the threshold criteria by using 
the mean hypothetical storm distance of the 
trajectory within the area in which STP ≥1 
resulted in contingency statistics that are quite 
similar to those of using the constrained STP 
areal coverage (cf. Figs. 4 and 5).  When the 
criteria for actual outbreak classification were 
altered by using the N15 index (Fig. 6), some 
subtle changes were observed.   Approximately 
20% of major outbreaks using the N25 index 
were no longer classified as major outbreaks 
using the tornado-dominant indices, and nearly a 
third of these cases were no longer classified as 
misses, as a result.  These cases typically 
involved only a small number of tornadoes.  This 
led to an increase in POD (PSS) from 0.89 (0.47) 
to 0.91 (0.55) using mean hypothetical storm 
distances of 500 km within the region of STP 
values greater than unity (cf. Figs. 5 and 6). As 
STP was formulated for the discrimination of 

tornadic and nontornadic supercells (Thompson 
et al. 2003), the improvement is predictable.  
Note, however, this also led to an increase in 
FAR (from 0.72 to 0.78), as the remaining cases 
classified as intermediate by the N15 index were 
diagnosed to be false alarms.  These differences 
in outbreak classification by the various indices 
are unavoidable, given the modifications to the 
weights of the variables used to develop the 
ranking schemes (SD10). 
 

The selection of the threshold index score of 
1 to separate major from intermediate outbreaks 
can be modified, depending on the desires of the 
decision-maker regarding skill and value of the 
diagnosed classifications. Lowering the 
threshold from 1 to 0.25 in increments of 0.25 
(Fig. 7) suggests the following: (1) The 
maximum PSS decreases as the outbreak 
classification threshold is lowered, whereas the 
other skill statistics exhibit little change in their 
maximum values. (2) As the outbreak 
classification threshold is lowered, the maximum 
skill scores (aside from PSS) occur at lower areal
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Figure 8:  As in Fig. 4, for the training cases only. Click image to enlarge. 
 
coverage thresholds, whereas the maximum PSS 
occurs at similar areal coverage thresholds.  (3)  
As a result of (1) and (2), the PSS approaches the 
HSS at lower outbreak classification thresholds.  
 

If the index score thresholds are increased 
above 1 (not shown), the following results are 
observed:  (1) The POD increases up to index 
thresholds of 1.75 (specifically, from 0.90 to 
0.97 using the same configuration as in Fig. 7).  
(2)  The FAR and POFD also increase.  The 
difference between POD and POFD increases up 
to index thresholds of 1.75.  The POD/FAR 
tradeoff is similar to what is observed in Brooks 
(2004), regarding tornado warning evaluation 
(see also the discussion of the duality of error in 
Doswell 2004).  (3)  As a result of (1) and (2), 
the PSS increases slightly up to an index 
threshold of 1.75.  The tendency of PSS to 
increase in this manner resembles trends 
discussed in Doswell et al. (1990).  (4)  Accuracy 
(HR) decreases as index threshold increases, 
leading to lower HSS and GSS with increased 
index threshold.    
 

The preceding discussion implies that a 
determination of value when discriminating 
outbreaks is appropriate when selecting threshold 
values of areal coverage, the index used to 
classify outbreak types, and the threshold score 
of the index chosen.  If the objective of 
predicting the occurrence of every major severe 
weather outbreak is more important than the 
over-prediction of these events (i.e., if the cost of 
“misses” is greater than the cost of “false 
alarms”), the areal coverage threshold criteria for 
discriminating outbreak type generally should be 
lower (near the peak of PSS) and the index 
threshold should be higher (above 1).  On the 
other hand, if the objective is to minimize the 
number of false alarms, higher areal coverage 
thresholds (near the peaks of CSI and GSS) and 
relatively low values of the index threshold 
should be used (at or below 1).  Determination of 
these thresholds in an operational setting is 
beyond the scope of this study, however. 

 
The preceding analysis included all 840 

cases.  However, splitting the cases into training 
and testing sets is more instructive, as it provides  
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Figure 9:  As in Fig. 4, for the testing cases only. Click image to enlarge. 
 
Table 1:  Statistical algorithms and identification numbers in the relevant figures for this section. 

 
Statistical Algorithm ID Number 
Linear discriminant analysis (multivariate normal density; pooled covariance estimate) 1 
Quadratic discriminant analysis  
(multivariate normal density; covariance estimates stratified by groups) 

2 

Linear discriminant analysis  
(multivariate normal density; diagonal covariance matrix estimates – naïve Bayes 
classifiers) 

3 

Quadratic discriminant analysis  
(multivariate normal density; diagonal covariance matrix estimates – naïve Bayes 
classifiers) 

4 

Decision trees 5 
Support vector machines (SVMs) – radial basis kernel function (RBF); quadratic 
programming (QP) 

6 

SVMs – linear; QP 7 
SVMs – quadratic polynomial; QP 8 
SVMs – third-order polynomial; QP 9 
SVMs – RBF; minimal sequential optimization 10 

 
information on the generalization of outbreak 
discrimination criteria.  It is emphasized that the 
preceding analysis with all 840 cases was not 
used in any way to conduct the training/testing 

analysis discussed below.  Using the constrained 
STP criteria (as in Fig. 4) for the training cases 
(Fig. 8) and testing cases (Fig. 9), we see that, 
indeed, the behavior of the contingency statistics  
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Figure 10:  a)  Same as Fig. 6d.  b)  As in (a), for 
630 training cases.  c)  As in (a), for 420 training 
cases.  Click image to enlarge. 
 
of the training data is quite similar to the 
characteristics when using all 840 cases (cf. Figs. 
4 and 8).  However, the results of the testing data 
appear to be more volatile.  The testing data 
consist of a small number of cases at relatively 
high grid point values (not shown).  This 
suggests that the contingency statistics, when 
using higher thresholds, are subject to substantial 
uncertainty.7

                                                           

                                                                               

7 The ratio of major severe weather outbreaks to 
the total in each dataset, using the value of the 

Unfortunately, the availability of a large 
number of testing cases while maintaining a 
relatively large training set is limited.  Reducing 
the training size to 50% of the total number of 
cases (420 out of 840) resulted in a worsening of 
the various statistics.  For example, when using 
the mean distance of a storm trajectory within 
the region in which the unconstrained STP ≥1 
and classifying outbreaks based on the N15 
index (as in Fig. 6), the skill scores of the entire 
data set and the training set using 630 cases 
appear to be comparable (cf. Figs. 10a,b).  
However, a reduction of the training set to 420 
cases showed a marked change in the skill scores 
at relatively high thresholds, indicating that the 
number of cases featuring high values of the 
mean distance is not adequately sampled (cf. 
Figs. 10a,c).  These results were consistent, no 
matter which threshold and classification criteria 
were used (not shown).  As a result of the above 
analysis, a training sample of 75% of the total 
number of cases (630 out of 840) was deemed 
appropriate.  However, the disadvantages of the 
relatively small size of the testing data sample 
are important to keep in mind as the results are 
described in the following sections. 

 
c. Volatility of the statistical models 
 

To determine the volatility of the training 
statistical models developed using the areal 
coverage criteria, a collection of 25 subsets of 
the training sample, using 90% of the cases 
(randomly selected) for each subset, was used 
to develop 25 statistical models.  The 
contingency statistics describing the capability 
of the statistical models to discriminate major 
severe weather outbreaks from intermediate and 
marginal outbreak days were computed.  Plots 
of the 25 scores then could be used to provide 
guidance on the uncertainty of the statistical 
models if they are tested on the same data (the 
testing data).  The choice of 25 statistical 
models was based on computational practicality 
and explanatory power of the volatility of the 
models.  The use of multiple statistical 
classifying algorithms was applied (Table 1), 
and their algorithm IDs are applied in the 
relevant figures for the rest of this section. 

 
N25 index as the outbreak classification 
criterion, was 0.154 for the 630 training cases, 
0.157 for the 210 testing cases, and 0.155 for the 
entire dataset. 
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Figure 11:  Contingency statistics (labeled) of 25 statistical models developed from the training data, using 
the mean hypothetical distance a storm travels through the area in which the unconstrained STP ≥1 as the 
diagnostic criterion, and the N15 index as the verifying outbreak classification criterion.  Statistical 
algorithm IDs are on the x-axes and are identified in Table 1.  Statistical models with the same contingency 
scores as others are overlain on preceding dots. Click image to enlarge. 
 

The results of the ten statistical algorithms 
using the N15 index to classify outbreaks as 
major (if score ≥1) or null events and the mean 
distance of the hypothetical storm through the 
area in which the unconstrained STP ≥1 as the 
diagnostic criterion (as in Fig. 6), can be 
summarized as follows:  (1) The contingency 

statistics obtained by the statistical algorithms 
are comparable to the “best” thresholds using 
the iterative threshold approach (cf. Figs. 4b,d 
and Fig. 11).  (2) No statistical algorithm 
seemed to perform substantially better or worse 
than the others (for this particular 
variable/index combination).  This result was 
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Figure 12:  Bootstrap 95% confidence intervals of the contingency statistics (labeled) for the testing set, 
using all 630 training cases.  The medians are shown by the connecting line for each of the 10 statistical 
models (x-axes; algorithms identified in Table 1).  Threshold and outbreak classification criteria as in  
Fig. 11. Click image to enlarge. 
 
true in general.  (3) The POD is subject to 
relatively large variability, as the number of 
major severe weather outbreaks (a + c) is small 
(33) in the testing set.  However, the remaining 
statistics featured very little variability among 
the 25 statistical models, indicating relatively 
little uncertainty in the statistical models that  

were trained.  (4)  The relatively high PSSs 
compared to HSSs (cf. Figs. 11e,f) agree with 
the iterative threshold analyses (e.g., cf. Figs. 
6d and Figs. 11e,f), and support the conclusions 
of Doswell et al. (1990) regarding the 
limitations of using PSS in a rare-events 
dataset. 
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Figure 13:  Severe reports from 1200 UTC on the indicated date to 1200 UTC the following day, with red 
dots denoting tornadoes, green dots denoting large hail, and blue dots denoting wind gusts or wind damage, 
for the a) 9 November 2000, b) 2 June 1993, c) 7 March 2000, and d) 17 May 1995 outbreak days.  Click 
image to enlarge. 

 
Multiple threshold criteria can be used as 

multidimensional input into the statistical 
algorithms.  If the constrained STP threshold 
(as in Fig. 7) and the mean distance of a 
hypothetical storm in the area in which the 
unconstrained STP ≥1 (as in Fig. 6) are 
combined, the results suggest subtle 
improvement in the various contingency 
statistics with some of the statistical algorithms 
(not shown).  However, numerous false alarms 
remain, no matter which combination of 
thresholds is used. 
 
d. Uncertainty in the testing data  
 

An additional means of expressing the 
uncertainty in the measurements is by obtaining 
bootstrap confidence intervals of the contingency 
statistics of the testing data results.  For this 
procedure, all 630 training cases were used, and 
contingency statistics were computed for the 
testing data.  The 210 (testing cases) × 4 (one 

column for each possible entry on a binary 
contingency table) matrix was resampled with 
replacement, and bias-corrected and accelerated 
bootstrapping (see Efron and Tibshirani 1993 
and Hodges 2008 for a description of the 
technique) was employed to obtain 95% 
confidence intervals (CIs) of the statistics for 
each of the ten statistical algorithms tested.  As 
noted above, the uncertainty was expected to be 
large, as the number of major severe weather 
outbreaks in the testing dataset was small, and 
the number of cases with relatively high values 
of whatever threshold criteria are employed was 
small.  Using the same threshold and outbreak 
classification criteria as in Fig. 11, the 95% CIs 
of the testing data were found to be quite large 
(Fig. 12).  For example, the 95% CIs had a range 
on the order of 25% for FAR and CSI, 40% for 
PSS, and 25% for HSS.  Although variations in 
the median skill scores were present using the 
various statistical algorithms, these differences 
were not significant. 
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Figure 14:  NARR fields valid at 0000 UTC 10 November 2000 of: a) 500-hPa winds (barbs in kt), isotachs 
(filled contours in m s-1), and geopotential heights (contours in m); b) surface dew point temperature (filled 
contours in ºF), winds (barbs in kt), and mean sea-level pressure (contours in hPa); c) SBCAPE (J kg-1); 
and d) 0–1 km SREH (m2 s-2). Click image to enlarge. 

 
As a result of the large uncertainty in the 

statistics of the testing data (i.e., the large CIs), 
there was difficulty in identifying particular areal 
coverage parameters that were statistically 
significantly better than others in discriminating 
major from intermediate and marginal outbreak 
days.  However, the findings were relatively 
consistent with the analysis in sections 3b and 
3c, as desired. 
 
4.  Subjective interpretation 
 

The interpretation of discrimination of major 
severe weather outbreaks from intermediate and 
marginal outbreak days is subject to several 
challenges and limitations.  False alarms are 
quite common, with many intermediate and 

sometimes even marginal outbreak days 
incorrectly classified as major severe weather 
outbreaks using the areal coverage of severe 
weather parameters.  Furthermore, some major 
severe weather outbreak days are classified 
incorrectly as intermediate to marginal outbreak 
days.  Analysis of the cases that commonly are 
misclassified provides valuable insight into the 
weaknesses of the methods both in ranking the 
outbreak cases and in the methods used for 
outbreak discrimination. 

 
Several major severe weather outbreaks 

between the index values of 1 and 2, using the 
indices in which only a subset of the tornado 
variables are used (N17–N19 and N21–N25; see 
SD10), are misclassified as intermediate or 
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Figure 15:  As in Fig. 14, valid at 0000 UTC 3 June 1993. Click image to enlarge. 
 

marginal.  These outbreak cases tend to be of 
two types:  few or no tornadoes occur, or the 
geographic area is small.  The 9 November 2000 
day (Figs. 13a and 14) is an example of a 
primarily nontornadic outbreak classified as a 
major severe weather outbreak using the N25 
index.  This wind-dominant event was associated 
with 0–1 km AGL SREH >100 m2 s-2 (Fig. 14d), 
but SBCAPE <500 J kg-1.  Thus, EHI and STP 
fields (not shown) were very small, and this case 
was diagnosed incorrectly as an intermediate 
event.  When the index used to distinguish major 
from intermediate and marginal outbreak days 
was changed to those indices that used all of the 
tornado variables (N0–N16 and N20; see SD10), 
the score decreases to below 1 (e.g., 0.93 for N15 
versus 1.40 for N25), resulting in a correct areal 
coverage diagnosis.  Not surprisingly, when 
using parameters specifically developed to 
distinguish tornadic from nontornadic 
environments and/or storms (such as STP), 

indices with all of the tornado variables are more 
appropriate. 

 
A second example is the 2 June 1993 

outbreak day (Figs. 13b and 15).  With this 
event, a large number of significant hail events 
(32) occurred in portions of Colorado, Kansas, 
and Oklahoma.  This led to a relatively high 
index value of 1.32 using the N25 index, as this 
index weighs significant nontornadic reports 
relatively highly and because the coverage of the 
severe reports was small (i.e., the reports were 
very tightly clustered).  The latter characteristic 
contributes to comparably high index scores, 
because of the incorporation of the so-called 
“middle-50% parameter” (first introduced in 
Doswell et al. 2006).  This variable is designed 
to counteract the tendency for days in which a 
large number of reports are scattered across a 
large geographic region to be considered major 
severe weather outbreaks.  The variable works 
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Figure 16:  As in Fig. 14, valid at 0000 UTC 8 March 2000. Click image to enlarge. 

 
by finding the differences of the 25th and 75th 
percentiles of the latitudes and longitudes 
separately, and multiplying these differences 
together.  The result is a latitude-longitude area 
(see SD10; their Fig. 3).  The smaller area the 
reports encompass, the higher the final ranking 
index score. 

 
As there were only 11 tornadoes reported on 

2 June 1993, the indices in which all of the 
tornado variables were included had slightly 
lower scores (e.g., 0.86 for N15).  With these 
types of events, the areal coverage of favorable 
severe weather parameters was quite small (Figs. 
15c,d), and the number of tornadoes was 
relatively low.  Thus, this case would be 
classified incorrectly as an intermediate outbreak 
for indices N17–N19 and N21–N25, whereas it 
would be classified correctly for indices N0–N16 
and N20.   
 

This example exposes a drawback of the 
ranking indices and/or using areal coverage as a 
means of diagnosing outbreak type.  Events with 
a large number of reports over a very small 
region are ranked higher than the same number 
of reports over a larger region.  Thus, these cases 
are more likely to be classified as major events, 
whereas using areal coverage as a means of 
diagnosing outbreak type potentially could favor 
events occurring over a larger area.   

 
Typically, cases classified as false alarms 

account for over half the diagnoses of major 
severe weather outbreaks.  Many of these cases 
exhibit certain characteristics that could be used 
to distinguish these events using modified 
techniques.  However, such modifications 
typically resulted in the addition of other 
undesirable effects.  A common type of case that 
was misclassified as a major severe weather 
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Figure 17:  As in Fig. 14, valid at 0000 UTC 18 May 1995. Click image to enlarge. 
 
outbreak featured midlevel flow oriented nearly 
parallel to a surface boundary (or perpendicular 
to θe gradients). 

 
Two map types commonly demonstrate this 

characteristic.  The first type exhibits quasi-
zonal midlevel flow atop a warm or stationary 
front.  These events commonly feature a large, 
unstable warm sector with ample low-level 
shear near the warm or stationary front.  
Because of these characteristics, large regions 
of favorable severe weather parameters exist, 
typically in an elongated region surrounding the 
surface boundary.   
 

The second type features highly amplified, 
nearly meridional midlevel flow atop a 
meridionally-oriented cold front or dryline.  
The 7 March 2000 outbreak day (Fig. 13c; Fig. 
16) is an example of this type of event.  The 
500-hPa shortwave trough approaching the 

region is highly amplified, displaying a 
negative tilt (Fig. 16a).  The surface boundary 
is oriented northwest to southeast across the 
southern high plains (Fig. 16b).  
Thermodynamic instability (Fig. 16c) and 
SREH (Fig. 16d) typically are situated in a 
relatively narrow, meridionally oriented region 
in the warm sector.  As the midlevel flow is 
parallel to this favorable region, pseudo-
trajectories calculated within this region would 
result in long distances and times in which the 
storm remains in the favorable area.  However, 
the convective mode with these events 
frequently is linear, which is not favorable for 
widespread tornado development.   

 
These two types of cases are straightforward 

to identify visually in a pattern recognition sense 
but are more difficult to account for using the 
areal coverage calculations.  However, the 
inclusion of new parameters that describe these 
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characteristics could be highly beneficial in 
discriminating these cases correctly.  A recent 
study by Dial et al. (2010) provides examples of 
variables (e.g., component of cloud-layer shear 
normal to a boundary) that could be incorporated 
in future work. 
 

Ultimately, there are cases in which no 
obvious methods exist to prevent their 
classifications as false alarms.  The 17 May 
1995 outbreak day (Fig. 13d; Fig. 17) is one 
example.  A relatively small number of 
tornadoes, but an appreciable number of wind 
and hail reports, were observed in much of the 
southern plains.  Shear and instability were both 
large in magnitude and extensive spatially (over 
a sizable portion of the southern US, Figs. 
17c,d) with a strong shortwave trough 
approaching the area.  Midlevel wind vectors 
contain a substantial component perpendicular 
to the surface boundary (Figs. 17a,b).  The 
synoptic environment and the fields of severe 
weather parameters were quite similar to major 
severe weather outbreak days, yet the 
standardized scores of each variable used to 
create the multivariate index were negative 
(except for the number of significant tornadoes, 
which was slightly above zero).  These cases, in 
particular, need to be studied in more detail to 
identify any synoptic and subsynoptic-scale 
effects and interactions that prevented the 
occurrence of a more significant severe weather 
outbreak. 
 

Not surprisingly, most failures in outbreak 
classification occur near the threshold used to 
distinguish the two groups.  For example, most 
major severe weather outbreaks misclassified as 
intermediate or marginal outbreak days have 
scores just above the value of 1, which is the 
value used to distinguish the two groups (not 
shown).  Similarly, most false alarms occur 
with intermediate outbreak days that fall just 
below the index values of 1.  Classifying most 
types of meteorological events into groups 
using specified thresholds is subject to such 
misclassifications.  The use of statistical 
techniques to account for “close calls” may be a 
beneficial endeavor (see Barnes et al. 2007 for a 
conceptual example using tornado warnings), as 
the classification of these events is subject to 
uncertainty, given the nature of reporting and 
archiving severe weather and the inherent 
challenges in the ranking of these events 
(SD10). 
 

5.  Summary and conclusions 
 

Subjective notions regarding the occurrence 
of major severe weather outbreaks include the 
presence of favorable ingredients for severe 
weather in a relatively large region.  With recent 
studies focused on identifying and ranking these 
events according to meteorological and societal 
significance in a relatively rigorous and repeatable 
way (Doswell et al. 2006; SD10), testing this 
particular notion with a relatively large sample of 
cases was possible.  The results of this study 
indicate that there was a tendency for the most 
severe convective outbreaks (primarily major 
tornado outbreaks) to have larger regions of 
severe weather parameters above specified 
thresholds compared to less severe (intermediate) 
and marginal outbreak days.  The use of areal 
coverage was tested in two ways:  computing the 
total number of grid points within a specified 
domain covering the US that exceeded a 
predetermined threshold, and calculating 
backward and forward pseudo-trajectories of 
hypothetical storms originating at each grid point 
within the region in which specified meteorological 
parameters exceed a certain threshold. 

 
Preliminary subjective analysis of the areal 

coverage calculations indicated certain 
limitations of the technique that required some 
adjustments.  For example, several outbreak days 
featured very high values of areal coverage, 
simply because of the inclusion of grid points 
over water.  Moreover, certain fields of 
meteorological parameters consisted of values 
considered favorable for significant severe 
weather, despite the presence of other 
meteorological conditions perceived to be 
unfavorable for its development (such as high 
instability but very low shear, and conversely).  
In an attempt to counteract these undesirable 
effects, additional constraints were imposed on a 
subset of the areal coverage computations, 
including the elimination of grid points over 
water and the inclusion of instability and helicity 
constraints for any grid point considered.  
However, the incorporation of any constraint 
typically led to a larger number of major 
outbreak days misdiagnosed as intermediate and 
marginal outbreak days. 
 

A large number of intermediate and marginal 
outbreak days consisted of areal coverage values 
similar to major outbreak days.  These large 
numbers of false alarms are similar to past 
studies attempting to discriminate storm and 
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severe weather types.  Subjective analysis of 
these false alarms suggested that a subset could 
be identified as such because of the synoptic 
environment observed at the time of the 
outbreak.  Specifically, events in which midlevel 
wind vectors were oriented parallel to a surface 
boundary were commonly misclassified as major 
outbreaks, as the conditions observed allowed 
for large regions of severe weather parameters 
favorable for severe storms. 
 

The vast majority of marginal outbreak 
days, characterized by large geographic scatter or 
multiple regional clusters of severe reports, 
featured small values of areal coverage.  
However, some days appeared to have 
particularly large, contiguous regions of 
favorable values.  This suggests that the “middle-
50% parameter” method of accounting for 
geographic scatter in the severe reports, used by 
D06 and SD10, may be an inadequate way of 
accounting for these cases.  Instead, a method to 
eliminate these days entirely or to identify 
multiple outbreaks on a given day (for days in 
which a large number of reports are clustered in 
multiple regions of the country) appears to be 
necessary.  One method, currently under 
investigation, is the use of kernel density 
estimation to identify regions in which a 
specified threshold regarding coverage of severe 
reports is exceeded.   
 

Other sources of error appeared to depend 
on the index used to rank the outbreaks in terms 
of severity (SD10).  For example, indices that 
used a larger number of tornado variables to rank 
the outbreaks appeared to be classified more 
accurately and skillfully using the areal coverage 
technique, though this improvement was seldom 
statistically significant.  As most severe weather 
parameters analyzed in this study were intended 
to describe environments favorable for 
tornadoes, this result was not particularly 
surprising.  Furthermore, most false alarms 
occurred near the threshold of the index used to 
classify outbreaks as “major” versus those that 
were “intermediate or minor”.  Use of a “close 
call” technique, as proposed in Barnes et al. 
(2007), may be appropriate in future work to 
account for this tendency. 

 
A large number of false alarm cases showed 

no readily apparent pattern or parameter 
differences between the major outbreak days and 
those classified as intermediate and marginal.  
This result demonstrates that: (1) scientific 

understanding involving our ability to 
discriminate the severity of outbreaks is limited; 
(2) past investigations of outbreaks or events 
may not have investigated null events as 
thoroughly as necessary; (3) the methods 
implemented to rank outbreak days are subject to 
the difficulties and limitations in observing and 
archiving severe weather, and likely do not 
counteract these undesirable characteristics 
completely; and (4) we likely are not observing 
and assessing the parameters that determine the 
relatively widespread occurrence of tornadoes 
and significant severe weather.  Furthermore, the 
technique would require modification prior to its 
implementation as a forecasting tool, where 
many more false alarms would arise (i.e., the 
Bayesian inversion problem). 
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REVIEWER COMMENTS 
 
[Authors’ responses in blue italics.] 

 
REVIEWER A (Paul J. Roebber): 

 
Initial Review: 
 
Recommendation: Accept with minor revision. 
 
General Comment:  This is an interesting paper that seeks to evaluate the notion that some measure of the 
“size” of environmental conditions supportive of severe weather should correlate to the magnitude of the 
event. 
 
Substantive Comments:  In my view, these include all comments regarding scientific content, regardless 
of how substantial the implied revisions might be. 

 
1) Section 2, first paragraph:  What deficiencies exist in these data (NARR)? The advantage [with respect] 
to other reanalyses is apparently resolution.  What benefits are there, though, [with respect to] RUC data, 
which are often used in studies of this kind?  I’d like to know more about what dictated this choice.  I 
suspect it was the period of record and otherwise the authors might have preferred to use RUC data rather 
than NARR.  This being the case, I’d like to know what problems exist with NARR data and how these 
were circumvented or otherwise were not an issue. 

 
We refer the reviewer to the following PowerPoint presentation, presented at the 85th Annual AMS 
Meeting for details: 

 
http://www.emc.ncep.noaa.gov/mmb/rreanl/narr.ppt  
or http://www.ejssm.org/ojs/public/vol5-7/narr.ppt
 

Notably, the regional reanalysis (RR) seemed to perform better than global reanalysis (GR) with near-
surface temperatures and winds, important obviously for shear/CAPE calculations.  Furthermore, lower 
grid spacing, particularly in the vertical (45 total vertical levels in the NARR, versus 17 in the NNRP), 
leads to more vertical levels sampling the boundary layer, another desirable characteristic of RR. 
 
We note in the manuscript that we want to look at mesoscale fields for a large number of cases.  The grid 
spacing of NNRP (e.g.) does not permit this (see Shafer et al. 2009).  The RUC was not used because the 
NNRP permits usage of many more years of data.  Given the sample size issues that remain even when 
using 28 years of cases, using a dataset with a smaller number of years available (such as the RUC) is not 
preferable. 
 
Some limitations of the NARR, also in the presentation linked above, generally do not affect the research 
we are conducting.  For example, we do not incorporate precipitation into the analyses, and we do not 
have any outbreaks in the Southwest (see slide 46). 
 
We have included a link to this presentation in the article, and we have emphasized wording regarding the 
necessity for a large dataset in the same paragraph. 

 
2) Second full paragraph of section 2: This is a standard means of splitting data.  For meteorological 
information, however, where there is often temporal dependence between days, is this a factor?  It is 
probably minor, since most outbreaks are probably separated in time but there may be a few events where 
this could be an issue. 

 
This is a good point, but multi-day outbreaks are not guaranteed to be in the same category.  For example, 
in this study, 3 May 1999, 4 May 1999, and 5 May 1999 were all included.  The 3 May and 4 May outbreak 
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days were major, whereas the 5 May outbreak day was intermediate.  Similarly, from 8-10 May 2003, the 8 
May and 10 May outbreak days were major, whereas the 9 May outbreak was intermediate. 

 
Additionally, consecutive outbreak days usually have diurnal maxima, indicating these events (though 
possibly associated with the same synoptic-scale system) are subject to different synoptic- and subsynoptic-
scale environments and could be considered separate events.  A subjective analysis of these cases (such as 
those listed above, and others) suggests that this is predominantly the case. 

 
Of greater concern are the outbreaks that tend to fall near the boundaries of the 24-h periods, in which one 
event occurs over two days considered separately.  There are no such cases included in this study.  Future 
work will be conducted to account for and include these cases in subsequent discrimination studies. 

 
3) Fourth full paragraph of section 2:  SVMs are subject to poor performance from noisy data.  Was this 
evaluated at all? 

 
We believe this is occurring, as well as known problems with SVM discrimination of imbalanced datasets – 
though we have not investigated this fully.  However, the point of using multiple statistical algorithms was 
to determine if one particular algorithm exhibited consistently better or worse performance. 

 
4) [Section 3a], third bullet point:  It seems like additional discrimination is provided by looking at the total 
grid points comprised of the intersection of multiple parameters exceeding thresholds.  For example, 
although you state that you use STP for analysis of the areal coverage technique, you later state: “Only grid 
points in which SBCAPE ≥1000 J/kg and 0-1 km SREH ≥100 m2 s-2 were considered in some subsequent 
calculations…”  I think the procedure needs to be clarified a little.  This goes back to the question of 
whether it is better to present the process of discovery which is necessarily iterative or to clean it up for the 
purposes of presenting the final results. I have more to say about this in the technical comments. 

 
We have cleaned up some wording in Section 3a.  Specifically, we’ve added a footnote specifically 
identifying the definitions of “constrained” and “unconstrained” STP in this paper, at the point referenced 
in the reviewer’s comment.  We have also modified the next paragraph to provide additional reasoning for 
the use of both “unconstrained” and “constrained” STP in subsequent calculations. 

 
The “process of discovery” was presented in this paper for three primary reasons.  First, we wanted to 
have a discussion devoted to describing the data – i.e., that areal coverage is noisy for outbreaks of various 
ranks; that some cases were prone to unrealistically high values of areal coverage because of water 
coverage, biases in STP (and other index) calculations, etc.  The (admittedly subtle) point of this section is 
that a naïve implementation of the grid point sums is not appropriate.  Second, there are shortcomings 
when accounting for the observed noisiness, STP biases, etc.  That is, implementing additional constraints 
in the data inevitably leads to a side effect.  This side effect is typically an increase in the number of 
“misses” of the major outbreak cases.  As a separate reviewer suggested additional/modified constraints, it 
is likely we have understated this point, and we have emphasized in the revised manuscript.  Third, this 
section immediately exposes the big problem with outbreak discrimination:  an excessive number of false 
alarms – which is a primary focus of the rest of the paper.   

 
5) [Section 3b]: I like the approach of using multiple skill statistics, recognizing the need to consider 
multiple measures which have different properties. 

 
Thank you. 

 
6) [Section 3b]: You raise the issue of considering the cost of misses versus the cost of false alarms, but 
then end the discussion rather abruptly.  It may well be beyond the scope of this work, but you can provide 
more information about what the tradeoffs are.  In particular, false alarms are high as you have noted. In the 
context of severe weather, it is probably true that one prefers to suffer higher false alarms to avoid missing 
events, but I think further elaboration on this important point is warranted and given some of the authors’ 
long experience, well within their capability.  Again (“…numerous false alarms remain, no matter which 
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combination of thresholds is used.”).  Incidentally, I’d be interested to see how this might play out for the 
two days of 2 May 1999 and 3 May 1999. 

 
We have added some discussion to this paragraph regarding the false positive/false negative tradeoff (and 
have added Doswell [2004] as a reference) to address this issue, but we refrained from introducing a 
lengthier discussion.  This topic is certainly worthy of elaboration and consideration, but as this is not a 
forecasting study, it is somewhat tangential to our objectives in this paper. 

 
More relevant to the study is the observed “duality of error” of our findings, addressed in Doswell (2004) 
and discussed with the topic of tornado warnings in Brooks (2004).  We have added some text on this topic 
later in Section 3b, when discussion of modifying the classification thresholds (e.g., new Fig. 7) is 
presented. 

 
We suspect the reviewer means 3 May 1999 and 4 May 1999 – both of which were major outbreak days, 
based on the indices developed in Shafer and Doswell (2010).  (There is no consideration of 2 May 1999 in 
our study.  It did not qualify as a top-30 day in 1999.)  If we use the “constrained” STP as the calculation, 
the 3 May 1999 outbreak day has 2858 grid points exceeding the STP threshold of 1, whereas the 4 May 
1999 outbreak day has 1523 grid points exceeding the threshold.  Of course, this would mean that 4 May 
1999 was subject to a miss much more so than 3 May 1999.  However, both values are far above 1000, 
which is near the value of highest PSS (see new Fig. 4d).  Interestingly, pseudo-trajectories have a mean 
distance of 767.9 km for 3 May 1999 and 983.8 km for 4 May 1999 – both of which easily exceed a 
threshold of ~500 km near the peak PSS (new Fig. 6d).  The higher value for 4 May 1999 is a result of 
midlevel flow oriented slightly more parallel to the axis of high STP. 

 
7) “It is emphasized that the preceding analysis with all 840 cases was not used in any way to conduct the 
training/testing analysis discussed below.”  This is obviously critical to having independence between the 
training and testing data. 

 
Agreed.  We wanted no such confusion when we switched topics to training/testing. 

 
8) [End of Section 4]: This discussion seems to be leading to the notion that this information might be 
better posed in the form of probabilities.  Can the authors comment on how a probabilistic approach might 
work? 

 
For a forecasting project, a probabilistic approach is absolutely appropriate.  As the ability to discriminate 
major from intermediate/marginal outbreak days is imperfect, a probabilistic approach is preferable.  
However, this project is not intended to be a forecasting study; instead, our objective is to show how 
imperfect the discrimination is.  As a result, we have included no such discussion in our revised version. 

 
One way to conduct a probabilistic approach would be to use frequencies of training data as a 
probabilistic diagnosis of an independent case.  For example, given a grid point sum and a specified upper 
bound and lower bound of grid point deviations, training data could be used to obtain a frequency with 
which that grid point sum (within lower and upper bounds) corresponded with a major outbreak. 

 
We performed a quick example.  Using mean hypothetical storm distances within the fields of 
unconstrained STP ≥1 and a lower (upper) bound 50 km below (above) the value for a particular outbreak 
test case (frequencies obtained  using the training set), we found a Brier score of 0.0804.  The Brier score 
of climatology was 0.0938, leading to a Brier skill score of 0.1432.  Although we did not perform 
confidence interval calculations for this example, these certainly can be computed as well. 

 
A limitation to this probabilistic approach is sample size concerns, particularly with cases featuring large 
values of areal coverage.  Frequencies of past cases may not correspond very well to an independent set 
because few examples exist.  Also, the frequency with which days featuring large areal coverage of 
parameters resulting in no major outbreak may be larger, perhaps substantially so, as we only look at the 
top 30 days of each year.  As a result, the approach above would be a conditional probability.  Finally, the 
frequency approach becomes more complicated if multiple parameters are computed.  Using kernel density 
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estimation to compute probabilities of multidimensional data may be appropriate here (as discussed in 
Doswell and Schultz 2006). 

 
9) Section 5, second full paragraph:  You discuss the issue that removing the water points (and other 
constraints) leads to less distinction between major and intermediate or marginal outbreak days.  But doesn’t 
this reflect the true task?  This also relates to point #4 above.  Why start with using the water points at all?  I can 
see this if you are desiring to present the process, but otherwise I would take that out from the beginning. 

 
The removal of water points did not lead to less distinction between major and intermediate or marginal 
outbreak days, and that is not what the manuscript says (said).  Removing water points led to a reduction of a 
large number of intermediate cases with widespread “favorable regions” over water, but it also led to some 
major outbreak days having a substantially smaller number of grid points.  The point of this discussion was to 
suggest that any effort to mitigate undesirable properties (such as substantially large areal coverage for 
intermediate days because of their proximity to water) leads to a side effect (a larger number of misses). 

 
However, we have taken much of the discussion of water points out of the updated manuscript, particularly in 
Section 3a.  We have also modified the wording in Section 5 accordingly. 
 
[Minor comments omitted...] 
 
Second review: 
 
Recommendation:  Accept. 
 
General Comments:  I find that the [authors] have been thoughtful in their responses: they have made a 
number of changes that improve the paper, and where they have elected to not make suggested changes, 
have provided valid reasons for not doing so.  Accordingly, I recommend publication of the revised 
version.  Thank you for the opportunity to participate in this process. 
 
 
REVIEWER B (Michael C. Coniglio): 
 
Initial Review: 
 
Reviewer recommendation: Accept with major revisions (mostly dealing with the presentation). 
 
General Comments:  This paper summarizes work on the discrimination of severe weather outbreaks 
using the areal coverage of severe weather parameters that builds on recent work by Shafer and Doswell on 
the discrimination of tornado and primarily non-tornadic outbreaks.  A tremendous amount of careful work 
that is certainly relevant to the severe storms forecasting community was performed by the authors.  It’s 
nice to see a rigorous attempt to quantify the subjective view that a good predictor of outbreaks is the 
amount of real estate that is expected to have sufficient CAPE/helicity/etc. on a given day. 
 
However the paper is too long, overly dense in many places, and the main points of the paper I believe are 
hard to discern as a result. Although my specific knowledge of the statistical algorithms and techniques to 
quantify uncertainty is limited, I do have some experience applying exploratory techniques to model 
analyses, and I couldn’t help get the feeling that the authors were trying to swat a fly with a sledgehammer, 
so to speak. I give some specific examples of this in my comments below.  
 
Furthermore, I was surprised that little to no attention was given to the problems of the storm reports data 
base, given that the characteristics of the database have changed significantly during the period examined 
in your study (1960-2006).  

 
A clarification:  The period of study is actually 1979-2006, as NARR data are only available from 1 
January 1979 to the present.  The scores used to rank the indices, however, are based on storm reports 
from the period 1960-2006.   
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This particular problem is discussed at length in Shafer and Doswell (2010 – hereinafter SD10) and the 
many studies referenced within SD10 (e.g., Brooks et al. 2003; Doswell et al. 2005; Verbout et al. 2006).  
For example, attempts to account for the numerous well-known nonmeteorological artifacts in the data are 
discussed throughout that paper – particularly in terms of detrending the variables.  We could add a lot of 
material on this topic to this paper, but it serves little purpose, not only because it is already discussed in 
SD10, but also because our findings from that paper show that the categorization of outbreaks as major or 
intermediate/marginal are quite robust to altering the weights used to rank the outbreaks (a method of 
accounting for the uncertainty of the severe reports).  The only exceptions to this occur right around the 
threshold used to categorize the events, which is unsurprising – as the atmosphere provides a spectrum of 
events rather than distinct bins, and when several of the tornado variables were removed from the indices.  
This latter characteristic was desirable – as it was intended to upgrade significant events with few or no 
tornadoes.  One method proposed in our paper to account for this uncertainty is to use various indices – 
not just one – and to vary the threshold used to distinguish major events from intermediate/marginal cases 
(e.g., new Fig. 7). 

 
We have added a few sentences in Section 2 discussing the nonmeteorological artifacts in the dataset, 
providing the references listed above. 

 
The first time anything related to this problem is mentioned in the paper is in the very last paragraph of the 
paper (statement #3).  

 
This is not entirely true, though our wording was admittedly subtle.  For example, in Section 2, we state: 

 
… because the cases were not completely rank-invariant (leading to some cases being 

classified as major outbreaks for some indices and intermediate for others; see SD10), the value 
of 1 initially was selected to separate major outbreaks from intermediate or marginal outbreak 
days, where the latter included cases with scores below the value of -1.  We by no means are 
stating that these values are the most appropriate, however.  Indeed, selecting various thresholds 
to examine differences in diagnosing outbreak severity is appropriate. 

 
The fact that the cases are not completely rank-invariant suggests there is uncertainty in the severe reports 
(as well as a lack of outbreak ranking “truth,” of course).   
 
In Section 1, we have also added wording to refer to SD10 for discussion on limitations of the data used to 
rank the outbreaks.   

 
I’m sure the authors are intimately aware of this problem, so the exclusion of any substantial discussion of 
the potential limitations of these uncertainties on this study is curious.  Are the authors assuming that the 
problems with the storm reports are obvious to the readers of this journal and go without saying; or was 
there not a more careful consideration of the potential effects on this study? 
 
This is not an either/or question.  These were discussed at length in SD10.   
 
Although I don’t think it’s a reason to stop publication of this paper, I wonder if the accuracy of the storm 
reports is sufficient to warrant such a sophisticated and complex treatment of the data.  In other words, 
what would the uncertainty associated with the observations be relative to the uncertainty associated with 
different test data and statistical algorithms (Figs. 13-15)?  

 
Uncertainty with individual observations is certainly present, but with outbreak categorization is another 
matter.  If the reports are detrended as in Doswell et al. (2006 – hereinafter D06) and SD10, outbreaks are 
ranked/categorized in a way that agrees with subjective notions and are relatively robust when modifying 
the weights of the variables (types of severe reports) used to rank the indices.  The fact that the same 
tornado outbreaks seem to appear at the top of the rankings in D06 and the same severe weather outbreaks 
seem to appear at the top of the rankings in SD10 implies that the uncertainty of individual storm reports is 
not enough to change the classifications of the outbreaks substantially.  The uncertainty of the rankings is 
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high enough to consider prognosis of an outbreak’s position in the rankings using observations or model 
simulations questionable, but this is not necessarily true for an outbreak’s classification. 

 
Would the observational uncertainty overwhelm anything meaningful that can be obtained from this 
analysis?  Admittedly, quantifying uncertainty with the storm reports and analyses is a very difficult 
problem.  But it’s somewhat strange to see such sophisticated techniques used to quantify the uncertainty 
with the classifications, with little to no effort placed on quantifying the uncertainty in the observations 
themselves, or even any discussion on how the report vulgarities might affect interpretation of the results.  

 
See above responses. 

 
For example, instead of examining the effects of the different statistical algorithms used to make the 
classifications, why not look at the uncertainty associated with the periods over which the outbreak events 
are obtained?  For example, I’d be very curious to see discrimination results on the data obtained from the 
report database after 1995, when a significant change in the reporting of severe convective winds was 
implemented (see Weiss 2002 Severe Storms [Conference] paper for more details).  

 
Any effort to look at certain periods within the 1979-2006 period is doomed to have sample size issues.  
Because there are few major events to be considered with the whole dataset already – leading to sample 
size issues already addressed in the manuscript―limiting the period to 12 years is subject to substantial 
uncertainty.  Any results we find here may not be associated with the differences in the period of record but 
simply with an inadequate number of samples from which to interpret results.  See Doswell (2007) for more 
discussion. 

 
Using the same methods as in (new) Fig. 4, here are the results when looking at cases only from 1996-2006 
(330 cases): 
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Comparing the above to Fig. 4, the differences are actually quite minor.  As expected, the differences are 
somewhat more noticeable for higher grid point thresholds (a result of small sample size of cases with 
relatively large areal coverage) – though even here, differences are minor.  Given the techniques employed 
in D06 and SD10 to account for secular trends in the severe reports and the relatively minor differences we 
see when looking at shorter time periods (which are bound to have more substantial effects from small 
sample size), we are not compelled to add more material on this topic to the paper. 

 
I’ve looked at SeverePlot output for a number of significant severe weather events over the same period 
examined in this study, and I suspect that some events classified as primarily tornado outbreaks or marginal 
outbreaks prior to 1995, or from earlier in the period, might have many more wind reports associated with 
the event if it occurred closer to 2006 and be classified differently as a result.   Problems like these would 
seem to be a much larger source of uncertainty than the particular algorithm used to make the 
classifications, or the indices used to classify the outbreaks, the results of this study would be more 
amenable to application if issues like these were addressed much more so than in the current version of the 
paper. 
 
This is why the variables used in the ranking indices were detrended – see SD10. 
 
Finally, SD10 is cited frequently throughout the paper. I review the current paper from a perspective of 
someone who only did a cursory reading of SD10, and therefore might represent a reader that learns of the 
material from SD10 for the first time. I was frustrated by the many citations to SD10 and what I felt was an 
over-reliance on discussions from that paper to explain the methods and results from the current paper.  

 
A cursory read of SD10 is probably not adequate, given the reviewer’s comments.  We have added wording 
in Section 1 to suggest a thorough read of SD10 is highly recommended.  We understand the frustration, 
but as this study clearly is based on the work of SD10, frequent citations are to be expected and a more 
comprehensive read of that study is critically important. 

 
This is especially troublesome in section 2.  It might help to warn the reader up front that a reading of SD10 
would help with the understanding of the current paper, but it still wouldn’t solve the problem of what I 
feel are confusing explanations of the data and methods, and insufficient descriptions of the indices and 
various terms borrowed from SD10.  I give some specific examples of this below. 
 
We’ll respond to these examples point-by-point below.  
 
Specific Major Comments:   
 
[Section 2]:  The reasons for using several classification algorithms and three different techniques to 
interpret the statistical results are not clear.  This is the sledgehammer I’m talking about.  Was it necessary? 
If so, what did using so many different tools contribute to the results?  
 
The use of multiple algorithms permits investigation of whether a specific algorithm appears to perform 
consistently better or worse than others, or if the results among all of them are consistent.  This does not 
mean that one result is better than another – i.e., if one algorithm performs worse than all of the others, it 
is best not to use that algorithm; on the other hand, if all of them perform consistently, the results are 
relatively robust and the use of a single algorithm may be good enough – but using a single algorithm 
naively is inappropriate, especially if that algorithm performs noticeably worse than most others.  We have 
added some wording in this paragraph to explain. 
 
[End of Section 2]:  Because “N15” and “N25” are not clearly defined up front, it took me a little time to 
realize that they are not predictive indices, but indices that are used to classify outbreaks.  Some 
reorganization of Section 2 is needed to help with comments #7-10 above.  
 
This is an excellent point.  As a result, we have added a paragraph summarizing the development of indices 
in SD10, introducing the labels N0-N25 (per response to comment 5), including the dataset used to develop 
the indices (with added reference to Schaefer and Edwards 1999), and adding brief mentions of converting 
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the variables to standard normal (per response to comment 6) and detrending (per response to overall 
comments).  We are hoping this additional information will make this description of the data and methods, 
particularly with regard to how the outbreak classifications were developed, clearer. 
 
I’m not sure what the purpose of Figure 2 is and I don’t find it to be particularly helpful.  We don’t know 
which case is which, and even if we did, it would be too hard to see it on this figure.  
 
We have modified Fig. 2 substantially, per comments from a separate reviewer.  We have used a scatter 
plot instead, labeled major outbreaks and intermediate/marginal outbreaks with different colors, and have 
modified some of the labeling.  Note that the outbreak rank is on the x-axis, which has nothing to do with 
the date the cases occurred (there is no such bias in the rankings, as the severe reports were detrended).  
What should be noted is that there is a lot of scatter in the grid point sums, and the STP and CAPE/SREH 
figures have a noticeable upward trend with the major outbreaks, whereas the CAPE/BULK6 and 
CAPE/SRFL products have no such trend.  Individual identification of cases is not possible for such a 
figure, aside from their corresponding ranking. 
 
Also, I find it curious that the curve seems to bend upwards for the lower-numbered cases for STP and 
CAPE/SREH1.  Any ideas why?  If the lower-numbered cases are the ones closer to 1960, is this a problem 
with report biases or analysis biases in some way? 

 
We are not sure what the reviewer is seeing here.  Certainly with the modified figure, and even with the old 
figure, we do not see such an obvious trend (especially comparing this to the major outbreak days).  In fact, 
the dots in the modified figure clearly cluster toward grid point sums of 0, as one would expect.  There are 
several individual exceptions obviously, which illustrate the false alarm problem.  We do note the CAPE 
bias with several of the marginal outbreak days in the text, which tend to be summer events with 
widespread regions of ample thermodynamic instability.   
 
Too much space is wasted describing the effects of the “water problem.”  Why not just make this obviously 
necessary constraint from the start and be done with it?  You’d thereby avoid introducing unnecessary 
jargon (constrained STP) and shorten the paper. 

 
The point of this section was to discuss the data and why a naïve implementation of it without 
incorporating additional constraints is not wise.  We have reduced, but have not completely eliminated, 
discussion of the water points for this reason.  Additionally, inclusion of any constraint, even those that 
seem “obvious”, resulted in an increased number of major outbreaks misdiagnosed as 
intermediate/marginal outbreak days, a point certainly worthy of discussion.  “Unconstrained” variables 
do not consider water points, but they also contain no additional constraints.  “Constrained” refers to the 
CAPE/SREH thresholds, which are open to more serious questions – see below.  We have clarified the text 
accordingly. 
 
Also, it’s not clear why you’d want to constrain the analysis to the grid points with both sufficient CAPE 
and helicity >100. What about days like Plainfield, IL on 28 August 1990, or Jarrell, TX [27 May 1997], 
where the extreme CAPE seemed to compensate from a lack of low-level shear? 

 
The reviewer curiously mentions two cases with isolated significant tornadoes with an otherwise relative 
lack of tornadoes across the country―both events are classified as “intermediate” by all 26 of the indices 
developed by SD10.  We have attached the reports for these two cases below.  As major severe weather 
outbreaks are primarily major tornado outbreaks, this is not a compelling case for modifying the 
constraints.  Isolated high-impact tornadoes are not the focus of this investigation.  Refer to our 
discussion of the differences of outbreak versus storm discrimination in Section 1.  We have also provided 
two examples of cases from the same year that do qualify as major severe weather outbreaks, for 
comparison. 

 

35 



SHAFER ET AL.  31 December 2010 

 
 

The comparison of the 1990 cases shows an outbreak with a large number of (significant) tornadoes (13 
March 1990) compared to 28 Aug 1990, whereas the 1997 cases show an outbreak with more reports 
clustered in a smaller region on 28 March 1997 compared to the more isolated/scattered reports observed 
on 27 May 1997.  
 
The reviewer also alludes to the limitation of adding constraints to the areal coverage variables – 
increasing the number of “misses” – for which we have also added some commentary in Section 3a.  
“Constrained” does not always produce “better” results – note the results of “constrained STP” versus 
“unconstrained pseudo-trajectories” (i.e., cf. [new] Figs. 4-6). 
 
[Section 3b]:  The authors mention that the CSS can pinpoint when forecasts no longer have value, but 
value in terms of what, exactly?  What application does determining the point at which value is lost have to 
this particular study? 

 
The Clayton skill score provides the ability to show the range of users who find value from a forecast (as 
shown in Wandishin and Brooks 2002), one of the characteristics considered to be desirable for 
verification (Murphy 1996).  (Here, value would be assessed using a cost-loss model.)  The reviewer is 
referred to these two manuscripts, mentioned in the text, for additional details.  The point of using this 
statistic, as well as several others, is to investigate different properties of various contingency statistics – 
absolutely necessary in studies like this.  If it is found that no users find value in the discrimination, then 
there would be no need to incorporate the method of discrimination in an operational setting. 
 
I wonder if some of the major severe weather outbreak days that are classified incorrectly as 
intermediate/marginal outbreak days are events that occurred in the cool season in the eastern U.S. 
Models/forecasters seem to have trouble with low CAPE/high shear events. 
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In general, this was not the case.  Most “misses” were primarily nontornadic outbreaks, or outbreaks 
spanning a relatively small area, as discussed in Section 4. 
 
I was looking forward to some subjective explanations for the incorrect classifications to supplement the 
statistics-heavy section 3, but was disappointed with section 4.  It is not clear how the examples provided in 
section 4 “provide valuable insight into the weaknesses of the methods.”  

 
For example, for the 9 November 2000 event, since it was a primarily nontornadic outbreak, and the N25 
index identifies it as a major severe weather outbreak and the STP was low, where does the 
misclassification occur?  

 
The N25 index classifies it as a major event, but the areal coverage of the STP was very low – hence, it was 
diagnosed (incorrectly) as an intermediate event.  Remember, the index is used to classify the event (as 
truth) and the areal coverage is used to determine what type of event it is (as a diagnosis).  As the goal is to 
associate larger areal coverage with major events and lower areal coverage with intermediate/marginal 
events, this is a misclassification. 

 
Also, doesn’t it go without saying that “when using parameters specifically developed to distinguish 
tornadic from nontornadic environments and/or storms, using the indices with all the tornado variables is 
more appropriate?”  When would it ever be less appropriate? 

 
We pose the reviewer an alternative question.  What if the results suggested otherwise?  To our knowledge, 
only two studies have focused on using STP (and other variables) to distinguish tornado outbreak 
environments from other types of events:  Shafer et al. (2010; MWR) and this study.  The former 
specifically examined tornado outbreaks and primarily nontornadic outbreaks.  This study focuses on 
major severe weather outbreaks and less significant events.  Even though the variable was designed to 
discriminate storm environments, that does not mean it would discriminate outbreak environments―please 
refer to our comments on this in Section 1.  Although we would expect this consistent behavior and 
subjective notions suggest this should be true, tests must be conducted to confirm it! 

 
Furthermore, a major severe weather outbreak is not always a tornado outbreak.  This is mentioned in the 
text (e.g., Section 1).   

 
What purpose is there to examining the ability of indices with fewer tornado variables to discriminate the 
tornadic from the nontornadic outbreaks? 

 
That is not the focus of our study.  We are discriminating major outbreaks from intermediate outbreaks.  
Although major severe weather outbreaks are predominantly major tornado outbreaks, that is not always 
the case. 
 
[Section 4]:  Was a parameter that represents the capping inversion or convective inhibition included in the 
analysis?  This seems like a simple way to factor in the potential for fewer storms than a large, unstable 
warm sector would suggest is favorable for severe weather. 

 
We show the results below of using SBCIN as a constraint in addition to CAPE and SREH.  In this 
example, the constraint for SBCIN was 50 J kg-1, though we did test other thresholds and found no 
appreciable differences.  The N15 index is used to classify outbreaks (e.g., compare to new Fig. 6). 

 
The results suggest little difference whether CIN is included as a constraint or not, at least in general.  Part 
of the problem with CIN may be associated with the fact that an accurate diagnosis of CIN requires high 
vertical resolution.  Reanalysis data may not have sufficient vertical resolution to make it a useful 
parameter, even if it is physically relevant.  

 
For the parallel midlevel flow-surface boundary map types, the problem is not necessarily with regions 
away from the boundary (the typically capped warm sector) but with the area in proximity to the boundary.  
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These areas tend to be large (elongated), and pseudo-trajectories within the region extend the length of the 
favorable region rather than crossing the much shorter width. 

 

 
 

 
I don’t see how the calculation of pseudo-trajectories within regions of large equivalent potential 
temperature gradients would help here. 

 
Equivalent potential temperature gradients tend to be large near surface boundaries.  If an enclosed region 
of these gradients (using some threshold) is calculated, the pseudo-trajectory can be drawn for each 
hypothetical storm at every grid point within this region.  The result would be a mean value (distance).  
Longer distances imply midlevel flow oriented more parallel to the surface boundary.  A threshold distance 
could be determined to identify these cases, signaling the possibility of this case as a “false alarm” based 
on the synoptic pattern in place. 

 
Per suggestion from a separate reviewer, we have added Dial et al. (2010) as a reference here – as they 
investigate the use of additional variables and have removed the suggestion we previously offered. 
 
Major outbreaks can still occur under a regime of midlevel wind vectors oriented parallel to surface 
boundaries- this is a common large-scale pattern for derechos.  What is it about the meteorology that these 
set-ups tend not to be major outbreak days in your study, despite the large regions of severe weather 
parameters favorable for severe storms?  
Because most major outbreaks, as defined in SD10 and our study, are not derechos – such a pattern would 
actually be unfavorable.  The tendency for these events to be (primarily) nontornadic, generally because of 
the resultant convective mode, is the reason these cases tend to be diagnosed incorrectly. 
 
 [Minor comments omitted...] 
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Second review: 
 
Recommendation:  Accept. 
 
General Comments:  I just finished reading through the revised paper and have no further comments or 
concerns large enough to note. 

 
REVIEWER C (Corey M. Mead): 
 
Initial Review: 
 
Recommendation:  Accept with minor revisions. 
 
The “Rasmussen table” below summarizes my evaluation of this study.  General and specific comments 
follow the table. 

 

Criterion  Satisfied 

Deficient, 
but can be 
remedied 

Deficient; 
cannot be 
remedied by 
modifying 
the paper 

Deficient, not 
known if it 
can be 
remedied by 
modifying 
the paper 

1.  Does the paper fit within the stated 
scope of the journal? 

X       

2.  Does the paper 1) identify a gap in 
scientific knowledge that requires 
further examination; 2) repeat 
another study to verify its findings; 
or 3) add new knowledge to the 
overall body of scientific 
understanding? 

X        

3  Is the paper free of errors in logic?  X       

4.  Do the conclusions follow from the 
evidence? 

X       

5. Are alternative explanations 
explored as appropriate? 

X       

6.  Is uncertainty quantified?  X       

7.  Is previous work and current 
understanding represented 
correctly? 

X       

8.  Is information conveyed clearly 
enough to be understood by the 
typical reader? 

X       

 
General Comments:  This paper explores the ability to diagnostically discriminate major severe weather 
outbreaks from less significant events using an objective areal coverage approach.  This areal coverage 
approach utilizes grid point summation of meteorologically favorable parameters and the calculation of 
backward and forward “pseudo-trajectories” of hypothetical storms within this region of favorable 
parameters to determine outbreak severity.   
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Though the particular method used in this work has some shortcomings, the prospect of potentially 
applying a similar type of approach in a prognostic sense is exciting.  Indeed, being able to differentiate 
high impact, widespread and significant severe weather episodes from those of lesser consequence is an 
overarching goal of operational forecasters.  And as such, this type of research is well warranted and 
worthy of publication in EJSSM. 

Substantive Comments:   

1)  In Section 1, I would like to comment on the author’s assertion that since operational models are not 
able to explicitly resolve tornadoes, their value then lies in “the forecast of meteorological parameters.”  
There is no doubt that evaluating the NWP forecasts of meteorological parameters is certainly a large 
component of present day severe weather forecasting.  However, I would also add that with the advent of 
high resolution (~5 km or less) convection allowing models, forecasters now have more detailed insight 
into possible convective modes which is a critical aspect of determining outbreak type and severity.   In 
fact, the manuscript acknowledges this by stating “The convective mode has profound implications on the 
type of severe weather that is observed…”. 

Good point.  We have included some wording here to indicate this.   

Further along in Section 1, I found myself a bit confused by the manuscript apparently making the 
distinction between many studies which “investigated the utility of a variety of severe weather parameters 
to distinguish storm modes, significance of severe weather, or types of severe weather” and the present 
work which “uses various severe weather parameters in the identification of a particular type of outbreak.”  
I suspect you are differentiating between research efforts on individual storm environments versus outbreak 
characteristics.  But, isn’t the former a subset or determinant of the latter? 

This is true, but it does not equate the two types of research.  Consider an event in which a single, 
significant tornado occurs on an otherwise nontornadic day, whereas a separate event has dozens of 
significant tornadoes.  The storm environment of the lone tornado in the former event could be quite 
similar to the storm environment of any of the significant tornadoes occurring with the latter event.  The 
synoptic and mesoscale environments, however, may be very different in the regions in which severe 
weather occurred – which is where the idea of areal coverage distinguishing outbreak events comes from, 
of course. 

2)  In section 2, it was noted that the NARR dataset was used which features 32 km horizontal grid spacing 
with 45 vertical layers which “provided a convenient means of analyzing mesoscale fields (of 
meteorological parameters) for a large number of outbreak days”.  This is in contrast to the companion 
work referenced in this manuscript (specifically, S09 and M09) which initialized high-resolution WRF 
model forecasts with the NCEP-NCAR reanalysis datasets having a horizontal grid spacing of 2.5 degrees 
latitude by longitude and 17 vertical levels.  The stated intent was to determine the extent to which 
synoptic-scale processes influence outbreak type.  The results of S09 and M09 indicate that even with the 
coarse nature of the input data, the WRF forecasts were skillful in discriminating outbreak type out to three 
days. 

Given the success of the above-mentioned methodology, why has this study adopted a different approach?  
Specifically, why was there a shift in focus from synoptic-scale input data to that of mesoscale?   For 
consistency, couldn’t a similar method to S09 and M09 have been employed whereby 00-hr WRF forecasts 
(valid at the time of the outbreak) were evaluated with the model initialized by the 2.5 degree NCEP-
NCAR reanalysis data? These forecasts would use S09’s Domain 3 (18 km) which would be expanded 
from a 121×121 grid to 300×200.  This would allow for an “apples to apples” comparison with the previous 
model simulations.  Moreover, all of the cases in SD10 (1410 days―1960-2006) could then be used, 
affording you larger training and testing sets.  

There are three important differences between this study and those of S09 and M09.  The first is those two 
studies were modeling studies – this one is not.  A true “companion piece” would be to run 1410 model 
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simulations for 1-day, 2-day, and 3-day forecasts of each of the cases.  Obviously, that’s computationally 
intractable.   

The second is that the type of outbreak discrimination is different.  In the former studies, we sought to 
determine the ability of the WRF to discriminate tornado and nontornadic outbreaks.  Here, we are 
attempting to distinguish major outbreaks from intermediate/minor events – a more difficult task.  Although 
we hypothesized that synoptic-scale processes could be used to distinguish tornado/nontornadic outbreaks, 
we are much less certain of that for discriminating major and intermediate/marginal outbreaks.   

Finally, our goal here is not to determine if synoptic-scale processes could distinguish these events.  We 
want to know if analyses of meteorological fields can distinguish major outbreaks from less significant 
events.  A primary motivation was to consider specifically if enhanced resolution would prove useful at this 
somewhat more sophisticated discrimination task.  As a first step, if the initial, analyzed fields were of little 
or no value, there would be no point to going on to consider model forecast fields. 

3)  In section 3a, I have a couple of comments and a question.  First, it was stated that “some areal coverage 
parameters showed negligible capability distinguishing outbreak days (e.g., the product of SBCAPE and 0-
6 km bulk shear exceeding 60 000…”.  As opposed to the product of SBCAPE and 0-6 km shear, I would 
suggest a grid point check of SBCAPE ≥1000 J kg-1 and 0-6 km shear ≥17.5 or 20 m s-1.  That way, the 
baseline threshold is an instability/shear combination that is supportive of supercells and other organized 
modes of convection.  As it stands, the SBCAPE term can dominate the product, highlighting grids in 
which the 0-6 km shear might be rather weak. 

We have attached this figure below. 

 

Indeed, a signal for the major outbreaks is seen here, similar to that of CAPE/SREH and STP.  However, 
false alarms remain a problem, suggesting this variable is no better than those discussed in the text.  (Also, 
the point of showing the product of SBCAPE and 0-6 km bulk shear was that there were combinations of 
parameters that performed poorly – our examples in the text were by no means the only combinations 
tested, as a footnote in Section 3a explains.) 
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I am curious as to what the cause(s) for the noncontiguous regions of parameters exceeding thresholds were 
in the majority of cases; perhaps the effects of model convective precipitation?  Going into this article, I 
had anticipated that the major outbreak days might have large, contiguous areas of favorable parameters 
when compared to lesser events. 
 
The manuscript states that “[v]ery few cases exhibited noncontiguous regions of parameters exceeding 
thresholds”.  Those cases that did exhibit these noncontiguous regions were primarily 
intermediate/marginal days, not major outbreak days, and generally were associated with multiple 
synoptic-scale systems (e.g., a shortwave trough approaching the High Plains and a separate shortwave 
trough nearing the East Coast).  Additionally, model convective precipitation is not involved in our work.  
We are looking at analysis fields―not model forecast fields. 
 
Due to the large values of CAPE dominating the EHI, SCP and STP, a constraint of SBCAPE ≥1000 J kg-1 
and 0-1 km SREH ≥100 m2 s-2 was used in some of the calculations of areal coverage thresholds.  As 
mentioned above, because of the way these indices are constructed, the large CAPE can mask environments 
deficient in sufficient deep-layer shear for supercells and other organized types of convection.  As such, I 
would recommend modifying the constraint to SBCAPE ≥1000 J kg-1, 0-1 km SREH ≥100 m2 s-2 and 0-6 
km shear [magnitude] ≥17.5 or 20 m s-1.   

 
Two comments:  (1)  STP involves all three of these parameters already (Thompson et al. 2003), and (2) the 
addition of deep-layer bulk shear could come at a cost of increasing the number of misses (remembering 
that each additional constraint is expected to increase the number of major outbreaks misclassified – see 
Section 3a).  We have attached the modified constrained STP contingency statistics below. 
 

 
 
The results show that grid point thresholds are very small for this particular version of constrained STP 
(i.e., with the deep-layer shear constraint included).  The false alarm problem remains, as FAR>POD 
starting at low thresholds.  The N15 index is used in the figure above. 
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As expected, skill scores are generally higher at lower thresholds.  The peak of PSS is comparable using 
the extra constraint (cf. new Fig. 4), showing little advantage of using this modified statistic. 
 
4)  In Section 4, it was noted that, “a common type of case that was misclassified as a major severe weather 
outbreak featured midlevel flow oriented nearly parallel to a surface boundary.”  Further in the discussion it 
is stated, “the inclusion of new parameters that describe these characteristics could be highly beneficial in 
discriminating these cases correctly.”  And finally in Section 5, it was noted that, “events in which midlevel 
wind vectors were oriented parallel to a surface boundary were commonly misclassified as a major 
outbreak…”.   The authors are referred to Dial et al. (2010) “Short-Term Convective Mode Evolution along 
Synoptic Boundaries” (http://journals.ametsoc.org/doi/pdf/10.1175/2010WAF2222315.1) for possible ways 
of addressing the orientation of the deep-layer wind field to the initiating boundary. 

 
We had recently become aware of this article when working on a separate manuscript and were going to 
include in the revised version of this one anyway, as it is quite relevant to the discussion in Section 4.  We 
have done so, and we will consider some of these parameters in future work. 
 
5)  In section 5, several possible reasons are listed to explain false alarm cases where the large-scale 
environment appeared quite similar to that of major outbreak days.  One possible cause not listed and not 
likely to be found given your current approach is dominant convective mode, which can have a profound 
impact on how a given severe weather event will unfold.  To this end, what if one were to consider 
conducting WRF simulations where a model field like updraft helicity (UH) was used as a surrogate to 
supercell/discrete mode?  A similar grid point summation could be done where UH exceeded a specific 
threshold.  This information could then be used in conjunction with your grid point summation of 
meteorologically favorable parameters to help determine outbreak type and severity.  This is certainly 
beyond the scope of this work, but something that might be interesting to consider in future research.    

 
This is obviously something that deserves consideration in future work, though there are challenges and 
limitations inherent in such research.  Any modeling study is limited computationally, and simulating 840 
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cases is a very time-consuming task.  Furthermore, it is quite possible the model would not develop 
simulated convection in a subset of cases.   

 
Convective mode is a consideration, of course, and is alluded to when mentioning the cases involving 
midlevel flow oriented parallel to a surface boundary (which, in the meridional case, typically develops a 
squall line).  As we mention in Section 1, meteorological fields of parameters are not likely to be associated 
strongly with convective mode, as previous studies have discovered. 

 
6)  Figures.  I’m wondering if perhaps the utilization of the N15 or N25 indices to highlight the major 
outbreaks (i.e., values ≥1) with a different color in figures 2, 5 and 6 might give the reader a better 
perspective on how the various discriminates performed.   I would suggest the use of the N15 index since it 
more heavily weights the tornado-dominant outbreaks, which are suggested to be the primary, major 
outbreak type. 

 
Based on other reviewers’ comments, former Figs. 5 and 6 were removed entirely.  Fig. 1 (the N25 index) 
is also available for comparison with Fig. 2.  We very much like the suggestion the reviewer provides, and 
we have incorporated in Fig. 2.  The N15 index is incorporated, as suggested. 

 
Why was the unconstrained STP used for Fig. 6?  Since you mention that “the unconstrained initial 
calculations of favorable areas were susceptible to a number of undesirable characteristics,” I would think 
you would want to use the constrained STP results in the figure. 

 
In our first version, we failed to illustrate the side effects of adding constraints to the areal coverage 
calculations.  We have added some material in Section 3a to explain these drawbacks.  Specifically, for 
every constraint added, the number of “misses” of the major outbreaks increased.  So, despite the obvious 
bias of high-CAPE environments in weak shear, adding the CAPE and SREH constraints typically lowered 
the areal coverage of cases with relatively low CAPE or relatively low shear.  Even though using 
constraints led to elimination of cases with clearly unfavorable conditions, it also led to an elimination of 
some cases that actually produced significant outbreaks of severe weather.  Thus, we decided to use the 
unconstrained and constrained variables in subsequent analyses. 

 
[Minor comments omitted...] 
 
Second review: 
 
Recommendation: Accept. 
 
General Comments:  The authors have satisfactorily addressed all of the comments and suggestions 
offered in the initial review process.  I want to commend them on their hard work and valuable contribution 
to EJSSM.   
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