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ABSTRACT

The areal extent of severe weather parameters favorable for significant severe weather is evaluated as a means

of identifying major severe weather outbreaks. The first areal coverage method uses kernel density estimation

(KDE) to identify severe weather outbreak locations. A selected severe weather parameter value is computed at

each grid point within the region identified by KDE. The average, median, or sum value is used to diagnose the

event’s severity. The second areal coverage method finds the largest contiguous region where a severe weather

parameter exceeds a specified threshold that intersects the KDE region. The severe weather parameter values at

grid points within the parameter exceedance region are computed, with the average, median, or sum value used

to diagnose the event’s severity. A total of 4057 severe weather outbreaks from 1979 to 2008 are analyzed. An

event is considered a major outbreak if it exceeds a selected ranking index score (developed in previous work),

and is a minor event otherwise. The areal coverage method is also compared to Storm Prediction Center (SPC)

day-1 convective outlooks from 2003 to 2008. Comparisons of the SPC forecasts and areal coverage diagnoses

indicate the areal coverage methods have similar skill to SPC convective outlooks in discriminating major and

minor severe weather outbreaks. Despite a seemingly large sample size, the rare-events nature of the dataset

leads to sample size sensitivities. Nevertheless, the findings of this study suggest that areal coverage should be

tested in a forecasting environment as a means of providing guidance in future outbreak scenarios.

1. Introduction

The identification of major severe weather outbreaks

has been a primary objective of severe weather fore-

casting for decades (Schaefer 1986; Johns and Doswell

1992; Doswell et al. 1993; Doswell 2007a). As these events

typically are responsible for a substantial portion of high

impact severe weather observed in a given year (e.g.,

Doswell et al. 2006, hereafter D06; Verbout et al. 2006;

Brotzge and Erickson 2009, 2010), methods that can dis-

criminate major severe weather outbreaks from less sig-

nificant events need to be demonstrated. As mentioned in

Shafer et al. (2010a, hereafter S10a), surprisingly little

research has been conducted on the discrimination of

severe weather outbreaks based on their relative severity.1

Most outbreak studies typically are of individual cases
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(e.g., Thompson and Edwards 2000; Corfidi et al. 2010) or

include a small sample of cases (e.g., Stensrud et al. 1997);

hence, the findings may not be generalizable.

In recent years, several studies have introduced re-

producible, quasi-objective methods to identify severe

weather outbreaks of specific types (D06; Verbout et al.

2006) or of any type (Shafer and Doswell 2010, hereafter

SD10; Shafer and Doswell 2011, hereafter SD11) using

observations of severe weather. Although the archive of

severe reports is known to have nonmeteorological ar-

tifacts (Brooks et al. 2003a; Doswell et al. 2005; D06;

SD10), these studies have demonstrated successfully the

capability of the severe reports to rank and classify these

events in agreement with subjective notions. However,

the imperfect observations of severe weather, the lim-

ited number of severe weather report variables that are

FIG. 1. Severe reports (tornadoes in red, hail in green, winds in blue) from 1200 UTC on the nominal date to

1200 UTC the following day, on (a) 5 Feb 2008, (b) 11 Nov 2005, (c) 20 May 2006, and (d) 1 Mar 2004. N15 ranking

index scores (described in text) are indicated. (e) Detrended and standardized severe weather report variables and

standardized areal extent of the KDE region (left y axis) for each outbreak as a function of the N15 index score (right

y axis), as computed in Shafer and Doswell (2011).
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archived, and the nebulous notion of what comprises

a severe weather outbreak suggest that distinction of se-

vere weather outbreaks as major or minor events is subject

to uncertainty (see S10a and SD11 for more details).

Previous studies (e.g., Mercer et al. 2009; Shafer et al.

2009, 2010b) have limited the scope to major tornado

and primarily nontornadic outbreaks, in which pro-

totypical cases of each type were identified by D06.

However, most severe weather outbreaks fall in between

these two categories (SD10; SD11), which prompted ad-

ditional investigation into the ability of reanalysis data to

distinguish the most significant severe weather outbreaks

FIG. 2. Illustration of the intersect method. The shaded region

indicates the KDE region for a hypothetical event. Each ellipse in-

dicates a hypothetical region in which a selected severe weather

parameter exceeds a specified threshold. The black ellipse outline is

the region that would be selected for the intersect method in this

case, as it is the largest region that also intersects the KDE region.

TABLE 1. Statistical discrimination methods and identification

numbers as indicated in the relevant figures.

Statistical method ID No.

Linear discriminant analysis (multivariate

normal density, pooled covariance estimate)

1

Quadratic discriminant analysis (multivariate

normal density, covariance estimates stratified

by groups)

2

Linear discriminant analysis (multivariate normal

density, diagonal covariance matrix

estimates–naı̈ve Bayes classifiers)

3

Quadratic discriminant analysis (multivariate

normal density, diagonal covariance matrix

estimates–naı̈ve Bayes classifiers)

4

Decision trees 5

FIG. 3. Contingency statistics (y axis; labeled) as a function of areal coverage threshold (x axis) for the sum values

of (a) STP, (b) EHI1, (c) SIGSVR6, and (d) SBCAPE using the KDE method. Cases are identified as major severe

weather outbreaks if the N15 index scores equal or exceed the value of 0 and minor outbreaks (null cases) otherwise.

See Fig. 1 for the N15 index scores of each outbreak as a function of its rank.
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from intermediate and marginal events (S10a). S10a used

a necessarily arbitrary threshold to classify outbreaks as

major or minor, based on the scores of the multivariate

index used by SD10 to rank the events. Any study attem-

pting to classify severe weather outbreaks inevitably must

choose arbitrary thresholds/criteria to distinguish the

events.

A limitation of outbreak discrimination studies is the

small sample of cases available for study (Doswell 2007b).

S10a included 840 cases for outbreak discrimination and

discovered sample size issues remained, even though this

sample size far exceeded those of predecessor outbreak

studies. Moreover, the sample used by S10a included

cases with geographically dispersed severe reports and/or

multiple spatially distinct clusters of reports. As neither

of these characteristics agrees with preconceived notions

of what constitutes an outbreak, SD11 introduced a new

method to identify, rank, and classify severe weather out-

breaks using two-dimensional kernel density estimation

(KDE; Bowman and Azzalini 1997) with Gaussian kernel

functions. Outbreaks were identified based on the num-

ber and density of the severe reports. A region where

probability density function (PDF) threshold criteria

were exceeded (based on the clustering of the severe

reports) was determined to be the area associated with

a single outbreak. Then, regions in which a threshold

number or density of reports was not exceeded were

excluded automatically. Not only did this method

eliminate cases with large geographic scatter and in-

clude distinct severe weather report clusters as sepa-

rate events on the same day, but it also greatly

increased the sample size of cases from that of pre-

vious work (;1400 in SD10 to ;6000 in SD11). Clas-

sification of cases as major or minor events in this study

is based on the outbreak ranking indices developed by

SD11. The reader is referred to that study for details

regarding the characteristics and limitations of these

indices.

As operational models do not resolve tornadoes ex-

plicitly and are not expected to do so soon, outbreak

(and storm) discrimination studies necessarily have fo-

cused on using meteorological covariates (Brown and

Murphy 1996). That is, they have used meteorological

variables associated with severe weather as a means of

diagnosing and/or predicting outbreak type. For the

outbreak discrimination studies mentioned above, two

FIG. 4. As in Fig. 3, but with skill scores.

812 W E A T H E R A N D F O R E C A S T I N G VOLUME 27



methods have been introduced. The first method uses

principal component analysis of gridded fields as a means

of data mining, and the principal component scores are

used to train and test statistical models. This method was

introduced by Mercer et al. (2009) and Shafer et al. (2010b)

to discriminate tornadic and nontornadic outbreaks using

mesoscale model output. The second method uses in-

formation regarding the areal coverage and magnitudes of

a severe weather parameter (or a combination of param-

eters) as a means of distinguishing outbreaks. Areal cov-

erage describes the geographic extent to which severe

weather parameters favorable for significant severe weather

exist. Areal coverage was used subjectively by Shafer

et al. (2009) and was incorporated in an objective man-

ner by S10a. The areal coverage and magnitudes of se-

vere weather parameters have been used in past studies

to identify the potential for significant severe weather

(e.g., Brooks et al. 2003b; Hamill et al. 2005). As the

areal coverage and principal component methods have

been shown to be similarly skillful (cf. Mercer et al. 2009;

Shafer et al. 2009, 2010b) and the areal coverage method

is simpler to compute and interpret, it will be used as the

sole means of outbreak discrimination herein.

The objectives of this study are 1) to test areal coverage

as a means of diagnosing major severe weather outbreaks

from less significant events (as determined by the so-

called outbreak ranking index threshold introduced

by SD11) using reanalysis data valid near the median

time of the outbreaks, 2) to determine the outbreak

ranking index threshold in which a particular severe

weather diagnostic variable discriminates major and

minor outbreaks with the highest skill, 3) to identify

a set of meteorological variables that appear to be

most capable of discriminating outbreaks, 4) to assess

any sample size and temporal limitations in the da-

taset, and 5) to compare the areal coverage method

to operational short-term forecasts of severe weather

outbreaks (i.e., Storm Prediction Center convective

outlooks). As the objective techniques developed in

these past studies have not been compared to current

operational forecasts attempting to determine the

overall severity of the events to this point, the fifth

objective will be a primary focus of the present work.

However, a caveat is that the areal coverage technique

is tested diagnostically, whereas Storm Prediction

Center (SPC) convective outlooks are short-term

FIG. 5. (a)–(d) Bootstrap medians (black line) and 95% confidence intervals (dashed gray lines) of HSSs of the 4057

outbreaks from 1979 to 2008 as a function of areal coverage threshold for the variables labeled (the same as those in

Fig. 3). The N15 index score of zero is used to classify events as major or minor outbreaks.
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prognoses. Nevertheless, we see this comparison as an

effective means of assessing the relative utility of the

areal coverage technique in the identification of major

severe weather outbreaks.

In section 2, we discuss the data and methods used in

the study. We present results of areal coverage diagnoses

for all of the cases included in the study in section 3 and

compare the results of the areal coverage technique to

SPC convective outlooks in section 4 for a subset of the

cases. Section 5 addresses the use of multiple variables

and sample size concerns. In section 6, we summarize the

findings and conclude with some ideas for future work.

2. Data and methods

SD11 ranked over 6000 severe weather outbreaks

based on their relative severity from the period 1960–

2008. Each outbreak was defined as a region associated

with a cluster of severe reports occurring in a 24-h period

from 1200 UTC on the nominal date to 1159 UTC the

following day. Outbreaks identified on adjacent days were

considered separately. The valid time of each event was

considered to be the time of the analysis available before

the median time of the reports. The fields of meteo-

rological covariates were available in 3-h increments

(1200, 1500, 1800, . . . , 0900 UTC; see below). For example,

if the median time of the reports was 2230 UTC, the 2100

UTC analysis was used as the valid time of the event.

The North American Regional Reanalysis (NARR;

Mesinger et al. 2006) dataset was used for this study, as

in S10a. The NARR dataset is available from 1979 to the

present, permitting a large number of cases (4057) to an-

alyze for the period of record. NARR data have a hori-

zontal grid spacing of 32 km, and 45 staggered layers in the

vertical from the surface to 100 hPa. These data were

converted via bilinear interpolation to an 18-km Lambert-

conformal grid with 31 vertical levels, which is the grid

spacing used in previous outbreak discrimination studies

(including Mercer et al. 2009; S10a). Such conversion

permits simple comparison of the diagnostic results herein

FIG. 6. (a)–(d) HSS values (95% bootstrap confidence intervals, with the medians indicated by the points) of the

training models using the 3129 cases from 1979 to 2002, when evaluated on 727 cases from 2003 to 2008. Severe

weather variables are as indicated (same as those in Fig. 3). The N15 index threshold of zero is used to classify events

as major or minor outbreaks.
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to future modeling studies with the same objectives.

Examples of the domain are shown in S10a (e.g., their

Fig. 3).

Each case is ranked based on the magnitude of one of

the outbreak ranking index scores developed by SD11.

To remain consistent with previous research (i.e., S10a),

the N15 index described in SD11 is selected for this

study. The N15 index weights events with multiple sig-

nificant tornadoes (i.e., $F2) highest, with moderately

high weights given to significant nontornadic reports [i.e.,

wind speeds $33.4 m s21 (65 kt) and hail size $5 cm].

This allows for major tornado outbreaks to be weighted

highest (e.g., Fig. 1a), and events with a large number of

significant nontornadic reports to be weighted moder-

ately high (e.g., Fig. 1b). These cases correspond roughly

to N15 index scores of $2 and between 0.5 and 2, re-

spectively. As the N15 scores approach and then fall be-

low 0, the events become somewhat smaller in size and

feature few or no tornadoes and few significant non-

tornadic reports (e.g., Figs. 1c–e).

Areal coverage is used to diagnose each outbreak’s

severity, which is determined by the N15 index score for

each case. An event is classified as a major outbreak if

the N15 index score is equal to or exceeds a predetermined

threshold and is a minor outbreak (null case) otherwise.

As there is no obvious definition of what a major severe

weather outbreak is, this study seeks to determine the

threshold of the N15 index score (to within 0.01) in which

the areal coverage distinguishes the major and minor

severe weather outbreaks most skillfully. This is referred

to as the ranking iteration method. Alternatively, one

could define major and minor severe weather outbreaks

using a single N15 index threshold, and determine the

areal coverage threshold that most skillfully discrimi-

nates outbreaks at the selected N15 index threshold.

This is referred to as the areal coverage iteration

method.

The areal coverage method utilized in S10a is modi-

fied in this study. In S10a, areal coverage was computed

as the total number of grid points that exceeded a pre-

determined threshold value for a selected severe weather

diagnostic variable. This method was susceptible to the

inclusion of locations not associated with the outbreak of

interest. In this study, there are two methods by which

areal coverage is computed to mitigate this problem: the

KDE and intersect methods (IM). For the KDE method,

FIG. 7. Performance diagrams (as in Roebber 2009) for the areal

coverage iteration technique, with severe weather parameters

(labeled). The N15 index threshold of 0 is used for classification of

major and minor outbreaks (as in Fig. 3). POD is plotted on the y

axis, SR is plotted on the x axis, lines of equal bias are diagonal

from bottom left to top right, and curves of equal CSI appear from

top left to bottom right. Areal coverage thresholds (used for di-

agnosis) are indicated as the shaded dots in the diagrams.

FIG. 8. As in Fig. 5, but for (a) STP and (b) SCP, using the N15 index threshold of 2 to separate major severe weather

outbreaks from less significant events.
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areal coverage is obtained by computing the value of the

severe weather parameter of interest at each grid point

within the region associated with the outbreak as deter-

mined via KDE (e.g., Fig. 2; see also SD11). These values

then are summed, and the mean, median, or sum value of

the reports is used as a diagnosis of the outbreak’s severity.

If the mean, median, or sum value exceeds a predetermined

threshold value, the event is diagnosed as a major outbreak.

The second method, IM (Fig. 2), begins by finding all

regions in which a severe weather parameter exceeds

a specified threshold. The largest contiguous region of

the parameter exceedance that also intersects the KDE

region associated with the outbreak is selected for anal-

ysis. Each grid point within the parameter exceedance

region (e.g., within the black ellipse in Fig. 2) is included

in the areal coverage computation. (In contrast, the shaded

region in Fig. 2 would be used for the KDE method areal

coverage computation.) As with the KDE method, the

magnitude of the severe weather parameter is tabulated

for each grid point, and the mean, median, or sum value is

used as a diagnosis of the outbreak’s severity. This method

was developed in addition to the KDE method because the

outbreak’s precise location is not known before the event

occurs. Thus, a method that incorporates the field of the

severe weather parameter that is in proximity to the out-

break was deemed a desirable alternative that may match

a forecasting scenario more closely.

After the areal coverage values are computed for each

outbreak, binary contingency statistics are used to eval-

uate the diagnoses. These statistics include the hit rate

(HR), probability of detection (POD), false alarm ratio

(FAR), probability of false detection (POFD), success

ratio (SR), critical success index (CSI), Peirce skill score

(PSS), Heidke skill score (HSS), Clayton skill score

(CSS), and Gilbert skill score (GSS). Equations for these

statistics are provided in S10a, and many of these vari-

ables are discussed in Doswell et al. (1990), Murphy

(1996), Wandishin and Brooks (2002), and Wilks (2006),

among numerous other studies. The four elements of the

binary contingency table (e.g., see the appendix of Mercer

et al. 2009) are identified as a (correct hit), b (false alarm),

c (missed event), and d (correct null) in this paper.

The severe weather variables analyzed include 0–1-,

0–3-, and 0–6-km bulk shear (BULK1, BULK3, BULK6);

surface-based CAPE (SBCAPE); 0–1- and 0–3-km storm-

relative environmental helicity (SREH1 and SREH3;

Davies-Jones et al. 1990); 0–1- and 0–3-km energy-

helicity index (EHI1 and EHI3; Hart and Korotky 1991);

the product of SBCAPE and 0–1- or 0–6-km bulk shear

(SIGSVR1 and SIGSVR6); the supercell composite

parameter (SCP; Thompson et al. 2003); and the sig-

nificant tornado parameter (STP; Thompson et al. 2003).

Many of these parameters have been found to be useful

in the discrimination of convective mode and observed

severe weather (e.g., Davies and Johns 1993; Johns et al.

1993; Brooks et al. 1994; Rasmussen and Blanchard

1998; Doswell and Evans 2003; Markowski et al. 2003;

Thompson et al. 2003; Mercer et al. 2009; Shafer et al.

2009; S10a).

3. Results (1979–2008)

a. The areal coverage iteration technique

Examples of the areal coverage iteration technique,

using the N15 index score of zero as the threshold for

FIG. 9. (a) Ratio of the number of cases that exceeded the N15 index scores for a given SCP areal coverage sum

threshold (x axis) to the total number of cases in which the areal coverage threshold is exceeded. (b) Ratio of the

number of cases that exceeded the N15 index scores (labeled) for a given SCP areal coverage sum threshold (x axis) to

the total number of cases in which the N15 index threshold is exceeded. In each plot, the sample size ratio also is

indicated, which is the ratio of the number of cases that exceed the areal coverage threshold indicated on the x axis to

the total number of cases.

816 W E A T H E R A N D F O R E C A S T I N G VOLUME 27



classifying outbreaks as major or minor events,2 are an

effective means of 1) identifying the meteorological co-

variates that are more accurate and skillful in distinguish-

ing the two classes of outbreaks and 2) identifying the areal

coverage threshold that distinguishes these two classes

best. The generalization of the results was also tested by

separating the 4057 cases into training and testing data.

The training data are composed of the cases from 1979

to 2002 (3189 cases), and the testing data are 727 cases

from 2003 to 2008 that are compared directly to SPC

convective outlooks in section 4. Statistical models are de-

veloped using discrimination methods (Table 1). Linear and

quadratic discriminant analysis (Seber 1984; Krzanowski

1988) and decision trees (Breiman et al. 1993) were used

to train the models, and these were tested on the 727

cases. Other methods were incorporated [e.g., support

vector machines; Cristianini and Shawe-Taylor (2000)]

but were not found to improve significantly upon the

techniques discussed below (not shown). The test cases

were bootstrapped using a bias-corrected-and-accelerated

technique (Efron and Tibshirani 1993), as the computed

95% confidence intervals provide insight into whether

a particular meteorological variable is significantly better

or worse in identifying major severe weather outbreaks.

From the results of the areal coverage diagnoses of the

sum values of STP, EHI1, SIGSVR6, and SBCAPE

using the KDE method (Figs. 3–7), STP and EHI1 are

superior to SIGSVR6 and statistically significantly more

skillful than SBCAPE in discriminating major and mi-

nor outbreaks. Whereas observed skill scores (excluding

CSS) tend to be below 0.25 for the best areal coverage

threshold for SBCAPE, skill scores for SIGSVR6 ap-

proach 0.4 and for STP and EHI1 exceed 0.4 (Fig. 4).

Training models developed using the four parameters

clearly suggest the significantly higher discrimination

skill of STP and EHI1 to SBCAPE, with the linear dis-

criminant analyses and decision trees of STP and EHI1

FIG. 10. As in Fig. 3, but for the ranking iteration method, using an areal coverage sum threshold of (a) 1500 for

STP, (b) 2250 for 0–1-km EHI, (c) 1.25 3 108 m3 s23 for the product of SBCAPE and 0–6-km bulk shear, and (d) 6 3

106 J kg21 for SBCAPE. N15 index thresholds from 20.4 to 6 are shown on the x axis.

2 The N15 score of zero is selected as the threshold because

evaluation of SPC convective outlooks results in maximum skill

scores near this value. See section 4.
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significantly more skillful than SIGSVR6 to 95% con-

fidence (Fig. 6).

The relative inability of CAPE to distinguish outbreak

environments is consistent with previous studies (e.g.,

Monteverdi et al. 2003; Shafer et al. 2009). As the areal

coverage threshold is increased, the FAR does not de-

crease substantially (Figs. 3d and 7), whereas the POD

decreases in a manner similar to other meteorological

covariates (Figs. 3a–c and 7). The result is a near-constant

value of CSI for a large range of SBCAPE values that

begins to decline above areal coverage sums of 5 3

106 J kg21. The other parameters shown in Fig. 3 exhibit

a maximum in CSI (;0.4 for SIGSVR6; .0.4 for STP and

EHI1).

The CSS trends differently (as a function of increased

areal coverage threshold) from the other skill scores using

the areal coverage iteration technique. This is because the

CSS [5SR 2 detection failure ratio; see Wandishin and

Brooks (2002)] is sensitive to a small number of false

alarms and a large number of correct nulls in a rare-

events dataset. That is, it is easy to generate diagnoses

with few false alarms (by using very high areal coverage

thresholds) while correctly identifying a large number of

null cases. Therefore, the CSS should be interpreted with

caution for the areal coverage iteration technique.

One of the advantages of the areal coverage iteration

technique is that there can be a quick determination of

FIG. 11. As in Fig. 4, but using the ranking iteration technique, with variables and thresholds as in Fig. 10.

FIG. 12. As in Fig. 7, but using the ranking iteration technique,

with the contingency scores for each N15 index score from 20.4 to

6 shown.
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the best value to use as a discriminator for any outbreak

ranking index threshold. For example, SD11 found that

N15 index thresholds of ;2 separated major tornado

outbreaks from other types of events reasonably well.

The areal coverage iteration method indicates that, for

STP and SCP sum values respectively, the best thresh-

olds to use (for the gridded domain used in our study) are

;7000 and ;37 000 (Fig. 8). Additionally, the median

skill score of SCP was larger (;0.38) than that of STP

(;0.3) for these values, though these results are not sta-

tistically significant at the 95% confidence level (owing to

a smaller sample size of cases with N15 index scores $2).

Probabilistic analyses provide considerable insight

into the utility of the areal coverage technique. Using

the SCP sum areal coverage as an example, the number

of cases that exceed the N15 index threshold for a given

FIG. 13. As in Fig. 11, but using STP sum areal coverage thresholds of (a) 500, (b) 1000, (c) 1500, (d) 2000, (e) 2500,

and (f) 3000 as the diagnosis.
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areal coverage threshold divided by the total number of

cases that exceed the specified areal coverage threshold

(Fig. 9a) generally increases with increasing areal coverage

threshold and decreasing N15 index threshold. For exam-

ple, greater than 95% (;35%) of the cases in which the

SCP sum areal coverage threshold equals or exceeds 40 000

have N15 scores .0 (.2). Similarly, the number of cases

that exceed a selected N15 index threshold for a specified

areal coverage threshold divided by the total number of

cases that exceed the same N15 index threshold (Fig. 9b)

increases with decreasing areal coverage and increasing

N15 index thresholds. For example, approximately 10%

(40%) of events with N15 scores .0 (.2) featured SCP

sum areal coverage values $40 000.

b. The ranking iteration technique

Differences in the areal coverage iteration and rank-

ing iteration techniques can be observed by the distinct

behavior of the contingency statistics as a function of

areal coverage (Figs. 3–7) versus as a function of N15

index score (Figs. 10–12). For example, the selection of

the lowest areal coverage threshold for a given N15 in-

dex score that classifies events as major or minor means

that every event is a forecast of a major outbreak (i.e.,

c 5 d 5 0). Thus, the POD and POFD are equal to unity,

and the FAR is large (SR is small). As areal coverage

increases, the POD, POFD, and FAR trend downward

(see Figs. 3 and 7). On the other hand, selecting the

lowest outbreak ranking index score as the threshold for

classifying events as a major outbreak means that every

event is a major outbreak (i.e., b 5 d 5 0). Thus, the

FAR for any selected areal coverage threshold is zero,

the POD is low, and the POFD is undefined. Thus, for

the ranking iteration method, the tendency is for in-

creasing POD, POFD, and FAR with an increasing out-

break N15 index score threshold (Figs. 10 and 12). For the

areal coverage iteration method, the CSI maximizes at

low areal coverage thresholds because POD , FAR at

high thresholds. From inspection of Figs. 3 and 7, the CSI

tends to be largest when POD . SR (i.e., at biases .1, or

FIG. 14. As in Fig. 5, but here skill scores are shown as a function of N15 index scores (ranking iteration method),

for (a) SCP using the KDE method, (b) STP using the KDE method, (c) SCP using the intersect method (for regions

with SCP $ 1), and (d) STP using the intersect method (for regions with STP $ 1). The areal coverage sum threshold

is 15 000 for (a) and (c), and 1500 for (b) and (d).
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c , b). For the ranking iteration method, the CSI maxi-

mizes at low outbreak ranking index thresholds because

POD , FAR at high thresholds. From inspection of Figs.

10 and 12, the CSI tends to be largest when SR . POD

(i.e., at biases ,1, or b , c).

Moreover, rather than the CSS becoming much larger

than the other skill scores at high areal coverage thresh-

olds using the areal coverage iteration technique (Fig. 4),

the PSS becomes large at high outbreak ranking index

thresholds using the ranking iteration technique (Fig. 11).

This is because the PSS (5POD 2 POFD) is sensitive to

a small number of misses and a large number of correct

nulls in rare-events datasets, which occur for very high

outbreak ranking index thresholds. That is, it is easy to

identify the most extreme events and still correctly identify

a large number of null cases. This tendency is discussed

further in Doswell et al. (1990) and S10a.

The differences in the two techniques allow for a more

thorough investigation of a particular variable’s ability

to discriminate major and minor outbreaks. For exam-

ple, the ability of SIGSVR6 and SBCAPE to detect the

most significant severe weather outbreaks (i.e., events

with increasingly large N15 index scores) for the same

areal coverage threshold is considerably lower than that

of STP and EHI1. This is obvious from inspection of Fig.

12, which indicates that, at lower SRs, STP and EHI1

have higher PODs for increasing N15 index scores.

Moreover, for a given N15 index score, SIGSVR6 and

SBCAPE have considerably lower SRs than STP and

EHI1 for the same POD at increasing areal coverage

thresholds (Fig. 7). The combination of these results sug-

gests that SIGSVR6 and SBCAPE are less accurate and

skillful in the discrimination of major and minor outbreaks

for any areal coverage threshold for virtually all N15 index

scores used to classify the events.

The areal coverage thresholds selected for each of the

variables in Figs. 10–12 result in maximum skill scores at

N15 index thresholds of around zero. Selection of other

thresholds results in displacements of these maxima

from zero (e.g., Fig. 13). A reasonable objective is to find

the N15 index score with the highest HSS and GSS, but

given the uncertainty associated with the N15 index

FIG. 15. Scatterplots of areal coverage (y axis) vs N15 index score (x axis) for each of 727 cases from 2003 to 2008

for (a) SCP and (b) STP, using the KDE method. The highest risk of the 1630 UTC day-1 SPC convective outlook

associated with the event is indicated. (c) The ratio ( y axis) of SPC convective outlooks (day 1, 1630 UTC) that agree

with areal coverage diagnoses based on the threshold indicated (x axis) for SCP using the KDE method. (d) As in (c),

but using STP.
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scores (see SD11), one may instead wish to find the

highest N15 index score in which the HSS and GSS are

not statistically significantly different than the maxi-

mum skill observed. This permits identification of the

smallest number of most significant outbreaks (i.e.,

those cases most likely to be major tornado outbreaks)

without a substantial decrease in the probability of their

detection. For example, STP areal coverage sum thresholds

of ;2000–3000 appear to be a desirable choice for the

KDE method (Fig. 13) because 1) the maxima in skill

scores (HSS and GSS) occur at relatively high N15

index thresholds (compared to using a lower diagnostic

areal coverage threshold), which means fewer cases are

classified as major severe weather outbreaks without loss

in skillfully discriminating those cases from less signifi-

cant events and 2) the probability to detect these cases

does not decrease substantially (relative to selecting

a lower areal coverage threshold) while simultaneously

reducing the number of false alarms (since fewer cases

would be diagnosed as major outbreaks).

c. Comparing the KDE and intersect methods

As the KDE method uses a posteriori knowledge of the

outbreak location, it was expected that the KDE method

would be somewhat more skillful in distinguishing major

severe weather outbreaks from less significant events.

This result was universally true for the severe weather

parameters tested. For example, comparison of SCP and

STP using the KDE and intersect methods (Fig. 14)

demonstrates the reduction in skill for the intersect method.

The maximum HSS decreases by ;7%–10%. This result

was consistent for other variables (e.g., EHI, SREH, and

SIGSVR; not shown) and was a function of the magni-

tude of the maximum scores (i.e., the higher the overall

skill, the more discrepancy between the KDE and in-

tersect methods). For HSS, these results were generally

statistically significant to 95% confidence (e.g., SCP and

STP; Fig. 14). Importantly, however, the intersect method

exhibits considerable skill in distinguishing major and

minor outbreaks; this is discussed further in section 4.

FIG. 16. (a) As in Fig. 12, but using SPC 1630 UTC day-1 convective outlooks with the slight (SLGT), moderate

(MDT), and high (HIGH) risks used as the threshold in forecasting major severe weather outbreaks. (b)–(d) As in

Fig. 11, but using SPC convective outlook categories of slight, moderate, and high (respectively) as the threshold in

forecasting a major severe weather outbreak.
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4. Results (2003–08)

a. SPC convective outlooks

The SPC issues day-1 convective outlooks several

times daily (0600, 1300, 1630, 2000, and 0100 UTC) valid

from issuance time to 1200 UTC on the day following

the nominal date. SPC convective outlooks can be com-

pared to the areal coverage diagnoses to determine the

relative utility of the areal coverage method as a means of

diagnosing outbreak severity. However, as mentioned in

section 1, caution is advised when making such compar-

isons. First, the SPC convective outlooks are forecasts of

the events, whereas the areal coverage method discussed

herein is diagnostic. Second, the SPC convective outlooks

are not designed for the outbreak rankings proposed by

SD11. However, the levels of risk (i.e., high, moderate,

slight, and ‘‘see text’’ or ‘‘no organized severe weather’’)

indicated in the outlooks are associated strongly with the

N15 index scores (see below).

SPC day-1 convective outlooks are available from

2003 to 2008, so only those cases (868 total) in the 1979–

2008 dataset are shown in this section. However, mul-

tiple severe weather events can occur in the same 24-h

period. As the highest categorical risk issued by the SPC

for a particular day almost always is associated with the

most significant event in the 2003–08 sample, only the

most significant severe weather outbreak is selected on

a given day for simplicity, leaving 727 cases for compari-

son. The sample size is quite small compared to the 30-yr

period used in section 3, and there is evidence that this

small sample size affects the results (see section 5). In the

following analysis, convective outlooks featuring moder-

ate or high risks of severe weather are evaluated as fore-

casts of major severe weather outbreaks, and convective

outlooks featuring only slight risks (or ‘‘lower’’ risks) are

evaluated as forecasts of minor severe weather outbreaks

(null cases), unless otherwise specified. Moreover, this

study does not attempt to verify the location of the SPC

convective outlooks.

Scatterplots of areal coverage values for the events of

interest, with the convective outlooks indicated, suggest

substantial agreement in diagnosed–forecast outbreak

classification (Figs. 15a,b). Most days with relatively

large areal coverage of variables associated with signif-

icant severe weather are days with moderate- and high-

risk convective outlooks. The ratio of areal coverage

diagnoses that ‘‘agree’’ in this way with the convective

outlooks (Figs. 15c,d) confirms this. The areal coverage

value with the highest ratio typically has a ratio magni-

tude of 0.725–0.8. Note that, owing to the rare-event

nature of the dataset, extremely high areal coverage

thresholds always lead to diagnoses of null cases, result-

ing in at or slightly below 70% of the diagnoses agreeing

with SPC convective outlooks (as ;70% are slight risks

or lower). In addition, it is apparent that events with rel-

atively high N15 scores generally are diagnosed as major

severe weather outbreaks. However, there are occurrences

of slight-risk days and events with substantial areal cov-

erage of favorable parameters in which N15 scores are

around or below zero (approximately 10%–15% of the 727

cases for the areal coverage method and SPC convective

outlooks), which is indicative of a false alarm problem.

Considering the 1630 UTC SPC day-1 convective

outlooks (Fig. 16) and using the slight risk as the

threshold for forecasting major severe weather out-

breaks, nearly every case is forecast as a major severe

weather outbreak. This results in a POD of ;1 for every

N15 index threshold selected (with decreasing SR for

increasing N15 threshold; Fig. 16a), and the highest skill

scores for the lowest thresholds (Fig. 16b). Selecting

such a threshold for major severe weather outbreaks

does not agree with preconceived notions of these

events (e.g., see Fig. 1d). Thresholds of about 20.4 may

be reasonable, however, in the discrimination of severe

weather events from null cases (i.e., ‘‘outbreak’’ versus

‘‘no outbreak’’).

Using the moderate risk as the major severe weather

outbreak threshold results in Roebber (2009) perfor-

mance diagrams and skill score plots that appear quali-

tatively similar to the areal coverage techniques discussed

in section 3 (cf. Figs. 12 and 16a; Figs. 11 and 16c). Thus,

comparing the areal coverage method to the moderate-

and high-risk outlooks is appropriate. The skill scores for

the moderate-risk or higher outlooks peak at N15 index

thresholds of ;0 (Fig. 16c). As discussed in Shafer (2010)

and SD11, events with N15 scores $0 tend to feature

multiple significant tornadoes and/or an anomalously

FIG. 17. As in Fig. 12, but for the SPC day-1 convective outlooks

issued at 0600, 1300, 1630, and 2000 UTC on the nominal dates for

the 727 cases from 2003 to 2008.
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large numbers of significant nontornadic reports. The

high-risk threshold for major severe weather out-

breaks has a lower POD for the same SR compared to

moderate-risk thresholds (or lower SR for the same

POD; Fig. 16a), and maximum skill scores at higher

N15 index thresholds (;2.75; Fig. 16d). As mentioned

above, events with N15 index thresholds .2 almost al-

ways are major tornado outbreaks.

The trends in the performance diagrams (Fig. 17) and

skill score plots (Figs. 18a,b) as a function of N15 index

threshold from 0600 to 2000 UTC SPC outlooks indicate

subtle, but not statistically significant (95% confidence),

improvement throughout the day as forecast lead time

decreases.3 For example, for a bias of unity, the CSI in-

creases from the 0600 to 2000 UTC outlooks (0.38–0.47).

Skill scores also increase from the 0600 to 2000 UTC

outlooks (0.44 to 0.47). A considerable portion of this

improvement comes from the 0600 to 1630 UTC out-

looks, as 1) 1200 UTC runs of the operational models

become available, 2) morning upper-air observations be-

come available, and 3) the evolution of the preconvective

environment is established (see Davis et al. 2010 for ad-

ditional discussion). Between 0600 and 1630 UTC, ap-

proximately 82% of the convective outlooks (595 out of

727 of the events) had the same maximum risk. Between

1630 and 2000 UTC, this increased to 95% (693 out of 727

events).

b. Comparison of SPC convective outlooks and areal
coverage diagnoses

The areal coverage diagnoses of the 727 cases from

2003 to 2008 are similar to the results for the 1979–2008

period, in general (e.g., cf. Figs. 14a,c and 18c,d). The

bootstrapped median contingency statistics of the areal

coverage diagnoses using the intersect method (Fig.

18d) are also quite similar to the 0600 UTC (Fig. 18a)

and 2000 UTC (Fig. 18b) SPC convective outlooks. As

FIG. 18. (a),(b) As in Fig. 16c, but for the 0600 and 2000 UTC SPC day-1 convective outlooks evaluated with the 727

cases from 2003 to 2008. (c),(d) As in (a),(b), but using the KDE and intersect methods, with SCP (areal coverage

threshold sum of 15 000) for the 2003–08 cases.

3 The maximum skill scores also trended toward lower N15 index

scores from 0600 to 2000 UTC SPC day-1 convective outlooks,

though this trend also was not statistically significant to 95% con-

fidence.
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expected, the KDE method is superior to any of the

other forecasts and diagnoses (Fig. 18c). However, the

bootstrap results suggest no method is statistically sig-

nificantly superior to any of the others. This result is true

for SCP, STP, EHI, and SREH. For other variables

(BULK1, BULK3, BULK6, SBCAPE, SIGSVR1,

SIGSVR6, etc.), the areal coverage method is similar

to or worse than the SPC convective outlooks (not

shown).

Using the N15 index thresholds of 0 and 2.75 (the

approximate values of the peak HSS for the moderate-

risk and high-risk thresholds; see Figs. 16c,d), the areal

coverage iteration method identifies the areal coverage

threshold that maximizes HSS for the KDE and intersect

FIG. 19. (a),(b) As in Fig. 18a, but for the SPC 1630 UTC day-1 convective outlooks, with moderate- and high-risk

outlooks (respectively) as the thresholds for forecasts of major severe weather outbreaks. (c),(d) As in Fig. 8b, but

using SCP and the KDE method (areal coverage threshold sum of 15 000) for the 727 cases during 2003–08, with N15

index thresholds of 0 and 2.75, respectively. (e),(f) As in (c),(d), but using the intersect method (areal coverage

threshold sum of 15 000 and a minimum grid point value of 1).
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methods (e.g., SCP in Fig. 19). For the N15 index

threshold of zero, the bootstrap median HSS of the

KDE method is higher than that of the intersect method,

and the HSS of the intersect method is similar to that of

the 1630 UTC outlook (cf. Figs. 19a,c,e); however, the

95% confidence intervals overlap for all three methods.

For the N15 index threshold of 2.75, the SPC convective

outlook has a higher bootstrap median HSS than either

areal coverage technique (Figs. 19b,d,f); however, the

small sample of outbreaks exceeding the N15 index

threshold of 2.75 (21 out of 727) results in large confi-

dence intervals and substantial overlap.

5. Extensions of the areal coverage method

a. Multiple covariates

In sections 3 and 4, the utility of the areal coverage

method was examined using a single variable (which itself

may be a combination of other variables, such as SCP).

Next, multiple variables are used to determine if there is

increased ability to discriminate major and minor severe

weather outbreaks. For this analysis, the 4057 cases are

separated into training and testing data, as discussed in

section 3a. One might expect improvement in the dis-

crimination of major and minor severe weather outbreaks

if multiple variables are used in the diagnosis. However,

bootstrap confidence intervals of the HSSs suggest little

or no improvement when using multiple variables (cf.

Figs. 6 and 20). There is a reduced range of the bootstrap

confidence intervals from previous work [;20%–25% in

S10a (their Fig. 12f) and ;10%–15% here, owing to an

increased sample size of the test cases (210 in S10a and

727 in this study)].

Why is there virtually no improvement when adding

more variables to the analysis? As Doswell and Schultz

(2006) discussed, many of the severe weather parame-

ters used in severe weather research or operational

forecasting are indices or derived variables, computed

by combining meteorological variables associated with

thermodynamic instability and/or vertical wind shear in

some manner. As a result, many of the severe weather

variables are moderately to highly correlated (Table 2).

Thus, it appears that little additional skill is gained by

adding variables to identify major severe weather out-

breaks, using the techniques presented here.

If the N15 index threshold used to separate events into

major or minor outbreaks is increased, the contingency

FIG. 20. As in Fig. 6, but using (a) SCP and STP, (b) 0–1-km SREH and SBCAPE, (c) 0–1-km bulk shear and the

product of SBCAPE and 0–6-km bulk shear, and (d) 0–6-km bulk shear, SCP, STP, and 0–1-km EHI.
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statistics for a particular combination of variables move

away from their optimal values (Fig. 21). Moreover, the

range of the 95% confidence intervals increases, since

the sample size of the major severe weather outbreaks

decreases. These larger confidence intervals can be de-

creased by reducing the size of the training dataset and

increasing the size of the testing data; however, the

training models may not be as skillful because of the

reduced sample size of the training data. For example, if

the N15 index threshold of 2 (as in Fig. 21d) is selected to

classify events as major or minor outbreaks, only 82 of

the 4057 cases from 1979 to 2008 have scores equal to or

higher than this threshold (only 28 of the 727 test cases).

Therefore, sample size concerns are present no matter

the size of the training and testing cases for high thresh-

olds of the outbreak ranking indices.

b. Temporal and sample size sensitivities

To determine if the results of the 1979–2008 period

are consistent throughout the time period, all cases for

assessment in 6-yr periods were selected. Comparisons

of contingency statistics and skill scores of the entire dataset

to those of five 6-yr periods (e.g., Fig. 22) indicate the

results are not always consistent. The 1985–90 time pe-

riod has skill scores that are relatively low compared to

the other 6-yr periods and to the whole dataset. Of note

was this period’s relative lack of major tornado outbreaks.

The number of severe weather outbreaks considered in

this period was 690, of which 190 cases featured N15

index scores $0 (27.5% of all cases in this 6-yr period)

and 6 cases had N15 index scores $2 (0.87% of all cases

in this period). For the whole dataset, these percentages

are 29.2% and 2.02%. The observed skill scores for the

cases from 1985 to 1990 are lower than those of the entire

dataset (using SCP, maximum HSS of 0.36 versus 0.43; cf.

Figs. 22c and 22a). Conversely, the 2003–08 period com-

prised 868 cases, of which 264 feature N15 index scores

$0 and 30 with N15 scores $2. The corresponding ratios

are 30.4% and 3.46%, respectively, which are higher than

those of the entire dataset. The skill scores for these cases

are higher than those for the whole dataset (maximum

HSS of 0.52 versus 0.43; cf. Figs. 22e and 22a).

These findings may be demonstrating time sensitivities

within the dataset. However, similar results are found for

nonconsecutive years featuring the lowest numbers of

cases in which the N15 index score is at least 0 and/or 2

(not shown). As forecasting accuracy is known to be re-

lated to the frequency of events (e.g., Doswell et al. 1993),

it is possible these findings are merely indicative of sam-

ple size sensitivities. That is, for subsets of cases in which

relatively few (many) major severe weather outbreaks

are included, contingency statistics tend to deteriorate

(improve) from those of the whole dataset.

Sample size sensitivities are observed in other ways.

The skill scores at higher N15 index thresholds are quite

variable in the 6-yr periods (e.g., the PSS from 1991 to

1996 versus 1997 to 2002; the HSS from 1997 to 2002

versus 2003 to 2008, etc.). The only solution to this prob-

lem is to increase the sample size, but some challenges

arise. For example, if more SPC convective outlooks were

available for comparison, an underlying assumption of the

present work is that these forecasts feature no temporal

trends in outbreak discrimination skill. This is not true in

reality and is in more danger of being violated with

a larger number of years considered. If SPC convective

outlooks were compared from 1979 to 2008, for example,

the skill with which major severe weather outbreaks were

identified would be lower in the first decade than the last

decade, because of the increased physical understanding

of these events during this period.4

6. Summary and future work

The present study is an extension of the work done by

S10a, in which the areal coverages of various severe

weather parameters are computed for over 4000 severe

TABLE 2. Correlations of the areal coverage sums for the severe

weather parameters labeled for the 4057 cases from 1979 to 2008.

STP SCP EHI1 EHI3 BULK1 BULK6

STP 1.0000 0.9036 0.8607 0.8831 0.5535 0.6429

SCP 0.9036 1 0.9348 0.8441 0.5945 0.5779

EHI1 0.8607 0.9348 1 0.9203 0.5831 0.594

EHI3 0.8831 0.8441 0.9203 1 0.4446 0.6163

BULK1 0.5535 0.5945 0.5831 0.4446 1 0.8019

BULK6 0.6429 0.5779 0.594 0.6163 0.8019 1

SBCAPE 0.2334 0.2334 0.38 0.5049 20.0323 0.2854

SREH1 0.5877 0.5979 0.541 0.4104 0.9306 0.7345

SREH3 0.6970 0.6255 0.5845 0.5496 0.8728 0.8369

SIGSVR1 0.6835 0.7754 0.9007 0.8512 0.4743 0.5279

SIGSVR6 0.5703 0.5492 0.6711 0.8013 0.1819 0.5297

SBCAPE SREH1 SREH3 SIGSVR1 SIGSVR6

STP 0.2334 0.5877 0.697 0.6835 0.5703

SCP 0.2334 0.5979 0.6255 0.7754 0.5492

EHI1 0.38 0.541 0.5845 0.9007 0.6711

EHI3 0.5049 0.4104 0.5496 0.8512 0.8013

BULK1 20.0323 0.9306 0.8728 0.4743 0.1819

BULK6 0.2854 0.7345 0.8369 0.5279 0.5297

SBCAPE 1 20.1668 20.0806 0.6281 0.8738

SREH1 20.1668 1 0.9406 0.3273 0.0708

SREH3 20.0806 0.9406 1 0.3715 0.2014

SIGSVR1 0.6281 0.3273 0.3715 1 0.8058

SIGSVR6 0.8738 0.0708 0.2014 0.8058 1

4 Obviously, this does not imply that an increased sample size

would be harmful. This example merely illustrates that the com-

parison is not straightforward when increasing the sample size.
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weather events to discriminate major severe weather

outbreaks from less significant events. Here, the sample

size of analyzed cases was increased by nearly a factor of

5 compared to S10a, as a result of the work by SD11 to

include multiple severe weather events on the same day.

Additionally, rather than using a subjectively selected

threshold of the ranking index scores developed by SD10

and SD11 (as conducted in S10a), the thresholds were in-

cremented to determine which thresholds the areal cover-

age method seemed to discriminate events most skillfully.

The results of this analysis suggest that areal coverage

of severe weather parameters can be an effective means

of discriminating major severe weather outbreaks from

less significant events. The areal coverage technique ap-

pears to work best for ranking index thresholds in which

the major events consist of a dense cluster of severe re-

ports, and an anomalously large number of significant

nontornadic reports and/or multiple significant tornadoes.

Although knowledge of the outbreak’s actual location

(i.e., the KDE method) results in improved accuracy and

skill, using fields of severe weather parameters exceeding

a specified threshold in proximity to the outbreak’s loca-

tion (i.e., the intersect method) is still a useful means of

discriminating events. The discrimination capability of the

intersect method is particularly important, as it has utility

as a prognostic technique, whereas the KDE method as

developed in this study could not be implemented in

a forecast setting. Comparisons of the KDE and intersect

methods to short-term SPC convective outlooks for cases

from 2003 to 2008 indicate statistically similar skill, in part

because of the relatively small sample of cases available.

Sample size sensitivities also are observed for the most

significant severe weather outbreaks for the entire data-

set, as these events are extremely rare. Large uncertainty

is observed when using high outbreak ranking index

thresholds to separate major and minor severe weather

outbreaks (see, e.g., Figs. 8 and 19).

The results of this study suggest the potential utility of

areal coverage in severe weather forecasting. However,

as the methods proposed here are diagnostic, the tech-

nique needs to be tested as a forecasting tool in sub-

sequent studies. Model simulations for a large number

of severe weather events need to be conducted and an-

alyzed. Furthermore, as the location of an outbreak is

not known a priori, development of techniques to fore-

cast an outbreak region is necessary. A recent study by

Sobash et al. (2011) suggests one approach. In this study,

‘‘surrogate’’ severe weather reports are generated from

FIG. 21. As in Fig. 20b, with the N15 index threshold for outbreak classification set to (a) 0.5, (b) 1, (c) 1.5, and (d) 2.
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convection-allowing models. The density of the surro-

gate severe reports could be used to identify outbreak

regions, perhaps using KDE.

Additionally, comparison of the areal coverage method

to SPC probabilistic outlooks would be beneficial, par-

ticularly when assessing an event’s potential severity for

a specific type of severe weather. Conversion of this work

to probabilistic guidance also is desired, with emphasis on

associating areal coverage magnitudes with the frequency

of threshold exceedances for past events (as discussed in

section 3a). However, as the sample size of the most sig-

nificant severe weather outbreaks and events with very

large areal coverage magnitudes is small, event frequencies

associated with large areal coverage values become more

variable. Thus, many more years of events may be required

before reliable and accurate probabilistic forecasts of the

FIG. 22. Skill scores as a function of outbreak ranking index, using SCP and the KDE method for (a) 1979–2008,

(b) 1979–84, (c) 1985–90, (d) 1991–96, (e) 1997–2002, and (f) 2003–08.
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most significant severe weather outbreaks are attained.

Finally, assessing the uncertainty of areal coverage in

a forecast setting is desirable; thus, the investigation of

areal coverage in model ensemble studies is encouraged.
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