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ABSTRACT

Various combinations of smoothing parameters within a two-pass Barnes objective analysis scheme are
applied to analytic observations obtained by regular and irregular sampling of a one-dimensional sinusoidal
analytic wave to obtain gridded fields. Each of these various combinations of smoothing parameters would
produce equivalent analyses if the observations were continuous and infinite (unbounded). The authors
demonstrate that owing to the discreteness of the analytic observations, the actual analyses resulting from
these various combinations of smoothing parameters are different. When derivatives are computed and as
stations become more irregularly distributed, these differences increase. An awareness of these potentially
significant analysis differences should prompt the analyst to consider carefully the choice of smoothing
parameters when applying an objective analysis scheme to real observations.

1. Introduction

Distance-dependent weighted averaging objective
analysis schemes such as those developed by Barnes
(1964, 1973) and Cressman (1959) have been proven to
be extremely useful tools for better understanding at-
mospheric behavior. Although such schemes no longer

are used to provide the initial conditions to operational
numerical weather prediction models,1 they still are
used frequently for diagnostic purposes. In fact, many
recent studies have used various incarnations of the
Barnes and Cressman schemes to investigate a diverse
range of topics and phenomena, such as snow-to-liquid
ratio climatologies (Baxter et al. 2005), a Southern
Plains supercell (Dowell et al. 2004), a decaying tropical
mesoscale convective system (Geldmeier and Barnes
1997), Florida land breezes (Case et al. 2005), the en-
vironment of warm-season elevated thunderstorms
(Moore et al. 2003), sea surface temperature modifica-
tion by hurricanes (Nelson 1998), and decaying extra-
tropical cyclones (Morris and Smith 2001), just to name
a few.

Along with its simplicity, one of the primary attrac-
tive features of the Barnes analysis scheme is its
well-known filtering (response) properties; these
properties are established a priori once the analyst
chooses the smoothing parameters for a particular
application. Therefore, by choosing the smoothing pa-
rameters, the analyst controls the scale retention (and
removal) characteristics of the analysis scheme. Often
the smoothing parameters are chosen such that the

1 This is due in part to two important factors: 1) These schemes
typically are used to perform univariate analyses and therefore
any possible relationships among variables are ignored. 2) The
statistical properties of both the background field and the obser-
vations are not taken into account.
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analysis retains a particular small percentage of the am-
plitude of the Nyquist wavelength (e.g., Koch et al.
1983).

Perhaps an overlooked aspect of the response func-
tion as presented by Barnes (1964, 1973) is that it is
derived by assuming that the observations are continu-
ous and infinite (unbounded). Meteorological obser-
vations are, of course, far from being either continuous
or infinite. Because of this, the actual response charac-
teristics of the Barnes analysis scheme differ from
the theoretical response characteristics (e.g., Acht-
emeier 1986; Pauley and Wu 1990; Pauley 1990;
Buzzi et al. 1991). The importance of the discreteness
of the observations is highlighted by Schlax and Chel-
ton (2002) who assert that “the filtering properties of
any smoother can depend as much on the data distri-
bution as on the selection of the smooth[ing] param-
eters” and by Stephens (1967) who states that “with
arbitrary data spacing almost any response may be gen-
erated.” Therefore, when selecting the smoothing pa-
rameters for a particular application of an analysis
scheme, the analyst should consider the data distribu-
tion characteristics, in addition to the desired scales to
resolve and the accuracy and representativeness of the
observations.

For a multiple-pass analysis scheme, a desired
theoretical amplitude response at a particular wave-
length can be derived from an unlimited number of
smoothing parameter combinations. The questions that
we wish to address are these: Do all combinations of
smoothing parameters that would produce equivalent
analyses if the observations were continuous and infi-
nite produce equivalent analyses when the observations
are discrete and bounded? If not, are the differences
significant? We will address these questions—mainly by
illustration—by applying an analysis scheme using vari-
ous “equivalent” combinations of smoothing param-
eters to analytic observations derived by sampling a
one-dimensional sinusoidal wave. We will compare
various gridded analyses, including first and second de-
rivatives, using three different measures of analysis er-
ror.

In the following sections, we describe how analytic
observations are created (section 2) and the Barnes
analysis process whereby these observations are
mapped onto a grid (section 3). In section 4, we present
the results. Finally, section 5 contains a brief summary
and concluding remarks.

2. Creating analytic observations and artificial
observing networks

The error-free scalar observations for this study are
derived by sampling an analytic one-dimensional sinu-

soidal function. The advantage of using an analytic
function is that the scalar field and its spatial derivatives
are known at all points within the domain. The kth
observation (Sk) is given by the function

Sk � sin�2�

L
xk�, �1�

where L is the wavelength and xk is the location of the
kth observation.

Artificial observing networks of considerable variety
can be obtained simply by sampling the analytic func-
tion at different points. For example, a network of 50
regularly distributed observations can be created sim-
ply by sampling the analytic function at regular inter-
vals. To create a network of 50 irregularly distributed
observations, the analytic function is sampled at irregu-
lar intervals. Following the method used by Barnes
(1994) and Doswell and Lasher-Trapp (1997), the ir-
regular intervals are determined by randomly displac-
ing each regularly spaced observing location by a dis-
tance that is no greater than some fraction of the aver-
age data spacing (�; here, � � 1 arbitrary length unit).
This fraction is referred to as the scatter constant (SC)
and we choose SC such that 0.0 � SC � 1.0. By choos-
ing SC � 0.0, an observing network is created whose
spatial distribution is perfectly regular. In contrast, by
choosing SC � 1.0, an observing network is created
whose spatial distribution is highly irregular, consisting
of significant data clustering and large data void re-
gions.2

3. Objective analysis scheme

Once an analytic observation has been created at
each of the 50 stations composing an artificial observing
network, the observations are analyzed to a regular
grid, whose grid spacing is 0.1�. The observations are
analyzed to the grid using a two-pass Barnes objective
analysis scheme (Barnes 1964, 1973). The weighting
function is given by

wk � exp��Rk
2

�ci��2�, �2�

where wk is the weight of the kth observation, Rk is the
distance between a station and a grid point, and ci is the
smoothing parameter used during the ith analysis pass.
Equation (2) also is used to create “analysis” estimates
at stations, except that Rk represents the distance be-

2 Doswell and Lasher-Trapp (1997) showed that little or no
increase in the irregularity of the station distribution is obtained
as SC increases beyond 1.0.
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tween observations. These estimates are used during
the second (correction) pass.3

Barnes (1973) and Koch et al. (1983) have shown that
the theoretical amplitude response (R) after the appli-
cation of a two-pass Barnes scheme is

R�c1, c2, N� � exp���c1�

2N �2�
� �1 � exp���c1�

2N �2��
� exp���c2�

2N �2�, �3�

where c1 is the smoothing parameter used during the
first pass of the analysis scheme, c2 is the smoothing
parameter used during the second pass, and N is the
nondimensional Nyquist multiple [L/(2�) ]. Any num-
ber of combinations of c1 and c2 can be used to produce
an analysis whose theoretical amplitude response at
some Nyquist multiple is some desired value. For ex-
ample, combinations of c1 and c2 producing theoretical
amplitude responses of 0.78, 0.98, and 0.996 for L � 5�,
L � 10�, and L � 15� waves, respectively, are shown
in Table 1. We emphasize that these are theoretical am-
plitude responses, which are valid only for data that are
continuous and infinite (unbounded). In the real
world, of course, observations are discrete—generally
collected at irregular spatial intervals—and bounded.
Therefore, the actual response differs from the theoret-

ical response in meteorological applications. In the fol-
lowing section, we will illustrate how different combi-
nations of smoothing parameters that provide equiva-
lent theoretical responses (analyses) in fact produce
different actual responses (analyses).

4. Results

a. Measures of analysis error

Three metrics are used to evaluate the analyses. First,
the root-mean-square error (rmse) is computed accord-
ing to

rmse ���
i

�Sg � Sa�2

Ng
, �4�

where Sg represents an analysis value (zeroth, first, or
second derivative), Sa represents the corresponding
analytic (true) value,4 and Ng is the number of grid
points within the verification domain.

The two other measures of analysis error are the
amplitude response and phase shift. Ideally, the actual
amplitude response at each grid point is equivalent
to the theoretical value implied by the response func-
tion [Eq. (3)]. Since the observations are discrete
and bounded, this will not occur (Pauley and Wu
1990; Buzzi et al. 1991). The deviation of the actual
amplitude response from the theoretical value can pro-
vide a measure of analysis error. Also, ideally, the
phase shift of the gridded observations is zero after the
application of this type of analysis scheme. The actual
amplitude responses and phase shifts are computed ac-
cording to the method described by Askelson and
Straka (2005) and Askelson et al. (2005), wherein
equivalent one-pass weights are required.5 These
equivalent one-pass weights are computed following
the approach of Caracena (1987) and Schlax and Chel-
ton (2002).

For the Barnes scheme, analysis errors associated
with lateral boundaries intrude toward the interior of
the analysis domain by a distance related to the value of

3 Bilinear interpolation is a popular alternative for creating
these “analysis” estimates at stations.

4 Analytic values of the zeroth derivative are obtained by re-
placing xk in Eq. (1) with the locations of the grid points. Simi-
larly, analytic values of the first and second derivatives are ob-
tained by taking the appropriate derivatives of Eq. (1) and replac-
ing xk with the locations of the grid points.

5 The equivalent one-pass weights are the weights that, when
applied to the observations using a one-pass analysis scheme, pro-
duce the same analysis as that produced using a multiple-pass
scheme.

TABLE 1. Various combinations of the smoothing parameters c1

and c2 used for the three different wavelengths discussed. For all
three waves, the values of c1 listed in the first columns are used.
The values of c2 for the L � 5�, L � 10�, and L � 15� waves are
shown in columns 2, 3, and 4, respectively. The theoretical ampli-
tude response is 0.78 for each combination of the smoothing pa-
rameters listed for the L � 5� wave, 0.98 for each combination
listed for the L � 10� wave, and 0.996 for each combination listed
for the L � 15� wave.

c1

R(L � 5�)
� 0.78

R(L � 10�)
� 0.98

R(L � 15�)
� 0.996

c2 c2 c2

1.3 1.23 1.19 1.15
1.5 1.09 1.04 1.00
1.7 0.99 0.92 0.88
1.9 0.93 0.84 0.79
2.1 0.89 0.77 0.72
2.3 0.86 0.71 0.67
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the smoothing parameter (e.g., Caracena et al. 1984;
Doswell and Lasher-Trapp 1997). We avoid con-
tamination of the error statistics associated with the
two lateral boundaries by limiting the verification
domain to the innermost one-half of the analysis do-
main.

b. Broad overview

To see how different combinations of the smoothing
parameters c1 and c2 produce different analyses for
three different wavelengths (L � 5�, L � 10�, and L �

15�) and six different values of SC, consider Figs. 1–5.6

Clearly, each of these figures suggests that as the ir-
regularity of the station distribution increases (i.e., as

6 As indicated by Eq. (4), the actual analytic function and its
derivatives are used to compute the rmses that are shown in Figs.
1–3. We note that if Sa is redefined to be the analytic function and
its derivatives damped according to the desired amplitude re-
sponse, the patterns of the contours remain almost unchanged,
although the magnitudes of the errors decrease somewhat. There-
fore, however Sa is defined, the conclusions presented herein are
consistent.

FIG. 1. Root-mean-square errors (rmses) of the gridded obser-
vations as a function of the scatter constant for various combina-
tions of “equivalent” smoothing parameters for (a) L � 5�, (b) L
� 10�, and (c) L � 15�. Each combination of smoothing param-
eters along the abscissa of each respective plot would produce
identical analyses if the observations were continuous and infinite.
Each plot represents the average of five other plots, each created
by choosing a different seed for the random number generator
used to generate various data distributions.
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SC increases), the analysis error increases. This result is
consistent with the findings of Smith et al. (1986), Bar-
nes (1994), Doswell and Lasher-Trapp (1997), and
Spencer and Gao (2004). Also, the errors tend to de-
crease as the wavelength increases. What is of most
interest in this study, however, is how the analysis er-
rors vary as a function of different combinations of the
smoothing parameters. For example, Fig. 1 suggests
that carefully selecting the smoothing parameters is
most important for highly irregularly distributed obser-
vations (e.g., SC 	 0.6); that is, the most significant
variability in the rmse for different combinations of

the smoothing parameters occurs for the data net-
works whose stations are highly irregularly distributed.
For observation networks whose stations are some-
what regularly spaced, any number of different
smoothing parameter combinations results in more or
less equivalent analyses. For the L � 10� wave (Fig.
1b), the smoothing parameter combination that best
minimizes the scalar rmse is one that contains a rela-
tively high (low) value of c1 (c2). For the L � 15� wave
(Fig. 1c), the desired value of c1 (c2) is even larger
(smaller).

When the derivative analyses are considered (Figs. 2

FIG. 2. Same as Fig. 1, except rmse of the first derivative.
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and 3),7 it becomes even more obvious that careful con-
sideration should be taken when choosing the smooth-
ing parameters, especially for a network of stations
whose distribution is irregular. For example, for L �
10� and SC � 0.8, the rmse of the first derivative com-
puted from an analysis created by choosing c1 � 1.3 and
c2 � 1.19 is nearly twice the rmse computed from an
analysis created by choosing c1 � 1.9 and c2 � 0.84 (Fig.

2b). Also, as before, it is clear that there are distinct
combinations of smoothing parameters that minimize
the rmse for a given scatter constant (Figs. 2 and 3).
Interestingly, the combination of smoothing param-
eters that minimizes the rmses of the gridded observa-
tions is not the same combination that minimizes the
rmses of the first derivative, which, in turn, is different
still from the combination that minimizes the rmses of
the second derivative. In fact, with each successive de-
rivative, the value of c1 (c2) that minimizes the rmses
decreases (increases). This may be an important factor
to consider, depending on the goal of the analysis.

7 The spatial derivatives are computed using a second-order
finite-differencing scheme applied to the scalar analysis.

FIG. 3. Same as Fig. 1, except rmse of the second derivative.
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Even for regularly distributed observations (SC �
0.0), there are differences in the derivative analyses—
especially the second derivative—at long wavelengths
for different combinations of the smoothing parameters
(Figs. 3b and 3c). In fact, for such distributions, the
rmse of the second derivative can vary by a factor of
nearly 5 for the larger two waves, depending on the
choice of the smoothing parameters.

The amplitude responses for the three different
waves (Fig. 4) generally give results similar to those
found by examining the rmses. Specifically, 1) the
analysis error tends to increase as the irregularity of the

station distribution increases and 2) the largest variabil-
ity in the quality of the analyses for different combina-
tions of the smoothing parameters occurs for highly
irregularly distributed observations. Unlike the rmses,
however, the combination of smoothing parameters
that best replicates the theoretical amplitude response
generally is the one with the highest (lowest) value of c1

(c2) that was considered in this study. However, when
the phase shift is considered (Fig. 5), the best combi-
nation of smoothing parameters—at least for the L �
10� and L � 15� waves—generally is one with a
slightly lower (higher) value of c1 (c2). As before, the

FIG. 4. Same as Fig. 1, except amplitude response averaged
across the verification domain. The theoretical amplitude re-
sponse is 0.78 for (a), 0.98 for (b), and 0.996 for (c).
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greatest variability in the quality of the analyses for
various combinations of the smoothing parameters oc-
curs for the data networks composed of highly irregu-
larly distributed observations. For regularly distributed
observations, the phase shifts are negligible for all com-
binations of the smoothing parameters and for all three
wavelengths considered. Not surprisingly, the most sig-
nificant phase shifts occur for the smallest wave consid-
ered (L � 5�), the one that is most poorly sampled. As
the wavelength increases and the wave becomes in-
creasingly better sampled, the phase shifts decrease.

c. Specific examples

Two analyses for a particular data distribution cre-
ated by choosing SC � 0.8 for three different wave-
lengths are shown as dashed curves in Figs. 6–8.
Clearly, the discreteness of the observations (indicated
by the small asterisks along the abscissa) is treated dif-
ferently by the two different combinations of smooth-
ing parameters, thereby producing distinct analyses for
the L � 5� wave (Fig. 6a). As shown in the previous
section, derivatives tend to magnify the differences in

FIG. 5. Same as Fig. 1, except magnitude of the phase shift
(degrees) averaged across the verification domain.

720 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 24



the analyses (Figs. 6b and 6c). As expected, the poorest
portions of the analyses are within significant data
voids. For example, at x � 18.5, the analyses are not
able to capture the large dip in the analytic wave owing
to inadequate sampling in this region (Fig. 6a). The
poorest portions of the analyses also are where the
most significant differences between the analyses tend

to occur. Figures 6d and 6e clearly illustrate how the
analysis error (here expressed in terms of amplitude
response and phase shift) can vary greatly across the
analysis domain. At only about 13 of the 171 grid points
within the interior portion of the domain does the ac-
tual amplitude response equal the theoretical value of
0.78. At the other grid points, the actual amplitude re-

FIG. 6. Gridpoint values created by choosing L
� 5�, SC � 0.8, and two “equivalent” combina-
tions of smoothing parameters [c1 � 1.3, c2 �
1.23 (short-dashed curves) and c1 � 1.9, c2 � 0.93
(long-dashed curves)] of the (a) analyzed obser-
vations, (b) first derivative, (c) second derivative,
(d) amplitude response, and (e) phase shift (de-
grees). The amplitude responses and phase shifts
are those associated with the gridded observa-
tions. In (a)–(c), the solid curves are the analytic
(true) values. The small asterisks just above the
abscissa represent station locations within the ar-
tificial observing network. The horizontal lines in
(d) and (e) represent the values if the analyses
were perfect. Only the interior 35% of the analy-
sis grid is shown.
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sponse exceeds the theoretical value by as much as
25% and is below the theoretical value by as much as
nearly 100%. Similarly, the same number of grid points
(a mere 8%) have the desired phase shift of zero de-
grees.

As the wavelength increases to L � 10�, nontrivial

differences in the analyses remain apparent (Figs.
7a–c), even though the wave is better sampled (relative
to the wavelength) than the L � 5� wave. As be-
fore, the discreteness of the observations forces the
analyses from the two smoothing parameter combina-
tions to differ, although the differences generally

FIG. 7. Same as Fig. 6, except L � 10� and the
two sets of smoothing parameters are c1 � 1.3, c2

� 1.19 (short-dashed curves) and c1 � 1.9, c2 �
0.84 (long-dashed curves).
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are less than for the L � 5� wave. Indeed, the ampli-
tude responses and phase shifts for the L � 10� analy-
ses are closer to the ideal values than they are for the
L � 5� analyses.

Finally, for the L � 15� wave (Fig. 8), differences
between the two analyses remain evident because of

the discreteness of the observations, even though this is
a well-sampled wave. However, because this is such a
well sampled wave, the differences in the analyses (and
the actual analyses errors themselves) are relatively
small. As before, large data gaps tend to degrade the
analyses in those regions.

FIG. 8. Same as Fig. 6, except L � 15� and the
two sets of smoothing parameters are c1 � 1.3, c2

� 1.15 (short-dashed curves) and c1 � 1.9, c2 �
0.79 (long-dashed curves).
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5. Summary and discussion

In this study, we have demonstrated the importance
of carefully choosing the smoothing parameters within
a multiple-pass Barnes objective analysis scheme. An
infinite number of smoothing parameter combinations
would produce equivalent analyses if the data were
continuous and infinite. However, because real obser-
vations are discrete and contained within bounded do-
mains, these same combinations of the smoothing pa-
rameters actually produce different analyses. The dif-
ferences become increasingly apparent as spatial
derivatives of increasing order are computed, an impor-
tant fact considering the prevalence of spatial deriva-
tives within many of the important prognostic and di-
agnostic equations in meteorology. We also found that
the differences between analyses created by different
“equivalent” combinations of smoothing parameters
are most apparent for observational networks whose
stations are highly irregularly distributed. Differences
between the analyses—and, in fact, analyses errors
themselves—tend to be relatively small when the ob-
servations are regularly distributed.

Owing to our use of errorless, analytic observations
and hypothetical observing networks, we cannot make
definitive statements regarding the “correct” choice of
smoothing parameters for a particular application.
However, we do offer the following broad guidelines
for minimizing analysis errors when applying a two-pass
scheme: 1) Use a relatively large first-pass smoothing
parameter (c1). This conclusion is consistent with Bar-
nes (1994) who stated that “if the first-pass analysis
contains spurious short wavelengths whose amplitudes
are significant, second- and higher-pass analyses will
exhibit those same spurious details even more incor-
rectly.” The smoothing parameter must not be too
large, however, or else boundary errors will be drawn
well within the interior of the analysis domain (Acht-
emeier 1986). 2) Reduce the first-pass smoothing pa-
rameter (c1) and increase the second-pass smoothing
parameter (c2) as spatial derivatives of increasing order
are desired. Our experiments indicate that there is no
single optimum combination of smoothing parameters
with respect to the fields and their spatial derivatives. 3)
Superimpose analytic data onto the specific observa-
tional network of interest in order to determine the best
combination(s) of smoothing parameters.8

Although we have investigated the properties of the
Barnes scheme only, we recognize that the Cressman
scheme (1959) remains a popular alternative for dis-

tance-dependent weighted averaging. An exhaustive
comparison of the Barnes and Cressman schemes is
beyond the desired scope of this work, but we do wish
to point out that even single-pass versions of these two
schemes configured to produce identical analyses for
continuous and infinite observations in fact produce
distinguishable analyses when the observations are dis-
crete and bounded (e.g., Fig. 9). [This is because the
properties of the observation distribution result in dif-
ferent amplitude modulations and phase shifts (not
shown) for the two analysis schemes despite their
“equivalent” design.] Therefore, we conclude that not
only is the choice of the smoothing parameters within a
multiple-pass objective analysis scheme an important
consideration for the analyst, but the choice of the form
of the weighting function itself (Barnes versus Cress-
man) should be considered, as well.

When systematic differences in data density are en-
countered such as with radar observations, the smooth-
ing parameter can be chosen to be a function of data
density (e.g., Trapp and Doswell 2000; Askelson et al.
2000). While providing the advantage of retaining more
detail where justified by the data, such inhomogeneous
schemes have the disadvantage of producing variable
local spectra as a result of variations in data density.
This can be especially troublesome for diagnosis of
moving weather systems, when analysis changes due to
data density variations can become convolved with ac-
tual time tendencies in the field, as discussed by Trapp
and Doswell (2000). Statistical analysis techniques that
take into account the distribution of the observations as
well as their error characteristics also can provide a
useful alternative that has some advantages (and also
some disadvantages) compared to simpler Barnes-type
schemes. One such example of a statistical objective
analysis scheme is that of Bratseth (1986), which is a
successive correction approach that converges toward a
limit that is optimal in a narrowly defined statistical
sense.

Finally, the derivatives in this study were computed
by applying a finite differencing scheme to the gridded
observations. Although this remains a popular method
for estimating spatial derivatives, abundant evidence
exists to argue that a gridded field of spatial derivatives
is best computed by applying an analysis scheme to
derivative estimates that are computed directly from
the observations (e.g., Schaefer and Doswell 1979;
Doswell and Caracena 1988; Spencer and Doswell
2001). In the future, we hope to compare these two
techniques for derivative estimation further by explain-
ing their differences in terms of amplitude and phase
errors.8 This is a suggestion also given by Barnes (1994).
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