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ABSTRACT

Basic concepts of buoyancy are reviewed and considered first in light of simple parcel theory and then in a
more complete form. It is shown that parcel theory is generally developed in terms of the density (temperature)
difference between an ascending parcel and an ‘‘environment’’ surrounding that parcel. That is, buoyancy is
often understood as a relative quantity that apparently depends on the choice of a base-state environmental
profile. However, parcel theory is most appropriately understood as a probe of the static stability of a sounding
to finite vertical displacements of hypothetical parcels within the sounding rather than as a useful model of deep
convection.

The thermal buoyancy force, as measured by the temperature difference between a parcel and the base state,
and vertical perturbation pressure gradient force together must remain independent of the base state. The vertical
perturbation pressure gradient force can be decomposed to include a term due to thermal buoyancy and another
due to the properties of motion in the flow. Some thought experiments are presented to illustrate the ambiguous
relevance of the base state.

It is concluded that buoyancy is not a relative quantity in that it cannot be dependent on the choice of an
essentially arbitrary reference state. Buoyancy is the static part of an unbalanced vertical pressure gradient force
and, as such, is determined locally, not relative to some arbitrary base state outside of a parcel. This has direct
application to the diagnosis of buoyancy from numerical simulations—done properly, such a diagnosis must
include not only the thermal buoyancy term but also the perturbation pressure gradient force due to buoyancy.

1. Introduction

In order to clarify our intentions for asking the pro-
vocative question embodied in our title, we begin with
some definitions. The notion of buoyancy in atmospher-
ic science has its roots in the so-called Law of Archi-
medes, taught in basic physics courses. In the recently
revised Glossary of Meteorology (Glickman 2000, p.
106), buoyancy is defined as the following:

1. That property of an object that enables it to float on
the surface of a liquid, or ascend through and remain
freely suspended in a compressible fluid such as the at-
mosphere.
Quantitatively, it may be expressed as the ratio of the
specific weight of the fluid to the specific weight of the
object; or, in another manner, by the weight of the fluid
displaced minus the weight of the object.
2. (Or buoyant force, buoyancy force; also called Ar-
chimedean buoyant force.) The upward force exerted
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upon a parcel of fluid (or an object within the fluid) in
a gravitational field by virtue of the density difference
between the parcel (or object) and that of the surrounding
fluid.

This Archimedean view of buoyancy, as given in the
second of the two definitions, is what is widely accepted
as the definition of ‘‘buoyancy’’ in atmospheric science.
Such a definition explicitly describes buoyancy as a rel-
ative quantity; that is, buoyancy is commonly under-
stood as a density difference between a parcel and its
surrounding fluid (called the ‘‘environment’’ of the par-
cel). This definition asserts that the buoyant force on a
parcel is defined in these relative terms; that is, a com-
parison of the parcel properties to those in the surround-
ing fluid. For the purposes of this paper, we are going
to define buoyancy in a way similar to that proposed
by Davies-Jones (2003), but we will not address the
issue of condensate products within the parcel. Hence,
we define positive buoyancy as the statically forced part
of the locally nonhydrostatic, upward pressure gradient
force. The details of this definition will be clarified in
what follows.

At this point, however, the Glossary definition for
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buoyancy begs the question of what is meant by a ‘‘par-
cel’’ of air. Turning once again to the Glossary (Glickman
2000, p. 556), a parcel is defined as the following:

An imaginary volume of fluid to which may be assigned
various thermodynamic and kinematic quantities.
The size of a parcel is arbitrary but is generally much
smaller than the characteristic scale of variability of its
environment.

In atmospheric science, the governing equations are
derived in a manner analogous to other disciplines in-
volving fluid flow, whereby the so-called continuum hy-
pothesis is applied to various physical laws presumed
to apply to fluids. As discussed in, for example, Batch-
elor (1967, 4–6), this avoids the additional complexity
associated with the molecular nature of real fluids. Mea-
surements within fluids are assumed to apply to some
volume of essentially arbitrary size (i.e., a parcel) con-
taining enough molecules to allow the application of the
continuum hypothesis. The application of physical laws
governing the parcel’s momentum and regulating mass
continuity is developed in terms of integrals over the
parcel volume (e.g., Salby 2003). Since the integrals
vanish and apply to an indefinite volume, their inte-
grands can be assumed to vanish identically. The in-
tegrands make up the familiar system of coupled partial
differential equations used in fluid dynamics.

2. Preliminary discussion of parcel theory

A greatly simplified treatment of buoyancy called
‘‘parcel theory’’ is widely taught in meteorology. Its
formal development is reviewed in the next section.
Within the particular confines of parcel theory, it is gen-
erally assumed that any changes of field variables within
the imaginary parcel volume are small, as suggested by
the Glossary definition of a parcel. The notion of a
parcel as a volume within which field variables are es-
sentially constant is not necessary to the development
of the governing equations, as just noted, but it is com-
monly associated with parcel theory. In fact, derivatives
of field variables are also defined for parcels, which
implicitly recognizes the existence of field variability
within parcels.

This common simplification to a purely Archimedean
understanding of buoyancy, in terms of homogeneous
parcels embedded within, but not interacting with, a
homogeneous environment can be misleading. As
shown recently by Davies-Jones (2003), this is an ab-
straction of the real situation that oversimplifies the sit-
uation for air parcels involved in convection. As our
ability to observe and describe processes within con-
vective clouds and their immediate surroundings im-
proves with enhanced observations and increasingly so-
phisticated numerical simulation models, the notions of
simple parcel theory can be an impediment to enhanced
understanding provided by these new tools. A complete
definition of buoyancy with respect to atmospheric flows

is distinctly non-Archimedean, an idea developed in
some detail by Das (1979) and recently reiterated by
Davies-Jones (2003).

Parcel theory explicitly equates a base (or reference)
state with the environment, and the perturbation with
the parcel. However, the use of such a base state is a
source of some difficulty if we define buoyancy in such
terms. Traditional parcel theory is one-dimensional; that
is, it only considers the vertical momentum equation,
so there is no place within this one-dimensional context
for the concept of an environment. All that exists in
parcel theory is a sounding, which is what is often re-
ferred to as the environment. Parcel theory then spe-
cifically considers the behavior of parcels drawn from
levels or layers within that sounding that are displaced
hypothetically in the vertical along adiabatic trajectories
on a thermodynamic diagram. The apparent basis for
equating the sounding with the environment is that the
vertically displaced parcel is considered somehow to be
embedded within the environment represented by the
original sounding, but any interaction with that envi-
ronment is ignored. Moreover, the environment is ex-
plicitly assumed homogeneous. Therefore, the implicit
model associated with parcel theory has the vertically
displaced parcel rising adiabatically in its own column
of infinitesimal diameter within a horizontally homo-
geneous environment of infinite extent, but not directly
interacting with that environment in any way.

Parcel theory’s abstract view of convection is rather
different from a practical one-dimensional cloud model.
In all one-dimensional cloud models used for various
purposes (e.g., Warner 1970; Holton 1973; Ryan and
Lalousis 1979; Kessler 1985; Ferrier and Houze 1989),
there is some attempt to account for the environment
around convection without explicitly adding horizontal
dimensionality. If a model includes such factors as lat-
eral entrainment or the size of a simulated convective
element, it is implicitly incorporating horizontal dimen-
sionality. Such models (see references above) are some-
times referred to as ‘‘1.5-dimensional’’ models. These
are not considered herein since they incorporate hori-
zontal dimensionality in a parameterized way in order
to achieve a practical simulation in one dimension.

A truly one-dimensional cloud model within a vertical
column of infinitesimal horizontal extent is mathemat-
ically equivalent to a slab model (horizontally homo-
geneous) of infinite horizontal extent. However, there is
a challenge with such a one-dimensional model: there
can be no meaningful incorporation of the mass con-
tinuity equation in such a context. Mass continuity is
an essential property of fluids, so its absence from parcel
theory and any other one-dimensional model is decid-
edly problematic. In a way comparable to what is done
in cloud models with horizontal as well as vertical di-
mensionality, a one-dimensional model would be ini-
tiated by inserting the one-dimensional analog to an
initiating bubble into the sounding: an air column of
finite vertical extent embedded within the original
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sounding but with different density. This one-dimen-
sional bubble of rising air cannot displace the air above
it laterally; the bubble must force the air above it upward
as well. Similarly, no air can flow in from the sides in
the wake of such a rising one-dimensional bubble of
air; the rising one-dimensional bubble would have to
stretch the air column below it, as well as compress the
air above it.1

Therefore, we propose that the mathematic devel-
opment associated with parcel theory, to be reviewed
in the next section, is not appropriately thought of as a
model of an atmospheric fluid flow. Rather, it can be
thought of as a probe: it probes the relationship between
air parcels hypothetically displaced along adiabatic tra-
jectories (dry and/or moist) and the original sounding,
equating buoyancy with the diagnosed temperature dif-
ference between the parcel and the sounding. The clas-
sical application of this probe is to assess the static
stability of finite-amplitude vertical displacements
(Sherwood 2000; Schultz et al. 2000). Therefore, parcel
theory explores the nature of the environment (the base
state) and can only be thought of as a very simple model
of convection in which the vertical displacements of the
air parcels have no effect on the base state. It is de-
pendent wholly on the choice of the base state: change
that base state and the results of applying parcel theory
are changed. Whatever practical value this highly ide-
alized model of deep convection might have, it often
leads to physical misunderstandings and incomplete di-
agnosis of the role of buoyancy in convection, as we
will discuss below.

Aircraft penetrations through clouds (e.g., Fig. 1) sug-
gest that considerable variability exists within clouds
and within the surrounding environment as well. In Fig.
1, note that the aircraft was within cloudy air through
most of the traverse shown. The so-called weak echo
region (WER) is characterized by an updraft core about
2–3 km across, with nearly constant equivalent potential
temperature (ue), and so might conceivably be modeled
as horizontally homogeneous, but notable variability is
present elsewhere within the cloud. Do parcels within
the WER respond to their immediate neighbors with
similar properties or do they respond to more distant
parcels within the cloud that have distinctly different
properties? Or do they respond to parcels outside the
cloud? Aircraft observations have shown that at a visual
cloud boundary (as in Fig. 2), there is not necessarily
an abrupt transition to quasi-homogeneous cloud air. If
we assess buoyancy as the simple difference between a
homogeneous parcel and its homogeneous surround-
ings, this creates a dilemma: Which environmental air

1 Owing to the absence of an appropriate mass continuity equation,
such a model is analogous to that of a mass suspended vertically
between two springs, with the static stability of the air above and
below the one-dimensional ‘‘bubble’’ corresponding to the spring
constants. Such a model is conceptually quite different from the tra-
ditional model of parcel theory.

parcels do we choose when the surroundings are in-
homogeneous?

For pedagogical purposes, we certainly admit that it
can be useful to simplify the problem by treating both
the parcel and its environment as homogeneous and non-
interacting, thereby reducing buoyancy to its purely Ar-
chimedean form. This is apparently intended to allow
prior experience that students might have with such
things as hot-air balloons and solid objects floating in
water to clarify the concept of atmospheric buoyancy.
However, this also creates difficulties, because real con-
vecting fluids behave differently from solid bodies float-
ing in tanks of homogeneous fluids, or gases enclosed
in physical containers (e.g., balloons) while embedded
within an external fluid. Air parcels have no physical
reality, and no well-defined boundaries separate them
from their surroundings.

As we attempt to simulate clouds numerically and
learn more about the behavior of real clouds with de-
tailed observations, the simple parcel theory model of
a homogeneous parcel displaced vertically within a ho-
mogeneous environment must yield to a more complete
and accurate understanding of buoyancy. In our ex-
perience, the simplified development of buoyancy us-
ing simple Archimedean arguments has become en-
trenched to the extent that it is now reflected in such
reference works as the American Meteorological So-
ciety (AMS) Glossary in spite of occasional recogni-
tion that it is incomplete and potentially misleading
(e.g., Das 1979; section 1.2 of Emanuel 1994; section
7.2 of Houze 1993; Davies-Jones 2003).

3. A review of parcel theory’s development

The starting point for consideration of buoyancy in
parcel theory is the vertical momentum equation in
height (z) coordinates:

dw ]p
r 5 2 2 rg 2 rg(q 1 q )l idt ]z

1 2rVu cosf 1 rF , (1)z

where w is the vertical component of motion, r is den-
sity, p is pressure, g is the acceleration due to gravity,
ql is the mixing ratio of liquid condensate, qi is the
mixing ratio of ice condensate, V is the angular rate
of the earth’s rotation, f is the latitude, u is the zonal
component of motion, and Fz is the vertical component
of any external forces (e.g., viscosity). It is common
in theoretical treatments to ignore the last two terms,
and we shall do so from here on. We shall also ignore
the contributions from condensate loading for sim-
plicity; Davies-Jones (2003) includes condensate load-
ing in his development. For some assumed state of pure
hydrostatic balance (the base state, denoted by an
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FIG. 1. Summary of T-28 armored aircraft data during a thunderstorm penetration between 1843 and 1851 MDT
on 2 Aug 1981: (a) vertical section of reflectivity along the penetration path of the T-28 aircraft, including a line
showing T-28 altitude; radar contours are in dBZ, and an approximate horizontal scale in km is indicated; (b)
vertical air velocity; (c) liquid water and ice mass concentrations; (d) equivalent potential temperatures; and (e)
intensity of turbulence. The dashed vertical lines represent the approximate boundary of the WER, while the solid
vertical lines outline the total region of updraft associated with the WER. [Fig. 9 in Musil et al. (1986).]
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FIG. 2. Cumulonimbus cloud during the afternoon of 18 May 1990, in the Texas panhandle, showing
the complex ‘‘bubbly’’ appearance typical of cumuliform clouds. (Photograph copyright 1990 by C.
Doswell.)

overbar), the lhs of (1) is zero, resulting in the well-
known simple relationship:

]p
5 2rg. (2)

]z

Next, it is customary that the pressure and density are
decomposed into a hydrostatic basic state and a pertur-
bation from that base state, denoted by ( )9:

p 5 p 1 p9, r 5 r 1 r9. (3)

Consequently, using (3) and the simplified form of (1),
it can be seen that

dw ]p ]p9
r 5 2 1 2 (r 1 r9)g. (4)1 2dt ]z ]z

Making use of (2) in (4) results in

dw 1 ]p9 r9
5 2 2 g .

dt r ]z r
(5)| | | |

| |
i ii

Term i on the rhs of (5) is associated with the vertical
gradient of the perturbation pressure, and term ii is as-
sociated with buoyancy [cf. Glossary of Meteorology
(Glickman 2000, p. 106, second definition, first para-
graph)].

In many textbook treatments of parcel theory (e.g.,
Hess 1959; Holton 1992; Dutton 1976; Emanuel 1994),
another step is done. This involves a replacement of r
in the denominator of both terms in (5) with . Such ar
step implicitly involves making either an anelastic [r
5 (z)] or Boussinesq [ 5 constant] approximationr r
and linearizing the equation by treating the perturbation

as if it is small compared to the basic state, allowing
the neglect of any high-order terms. When this is done,
the result is identical to (5), except that replaces r.r
Also common in textbook developments of parcel the-
ory is the neglect of term i in (5) [e.g., as in Holton
(1992, p. 54), Dutton (1976, p. 70), or Emanuel (1994,
p. 6)], confining the effect of buoyancy only to term ii,
which Kessler (1985) calls the thermal buoyancy (a con-
vention we will follow hereinafter).

The remaining term, term ii on the rhs of (5), is not
yet in its most commonly used form, however. The equa-
tion of state is simply

p 5 rRT ,y (6)

where Ty is the virtual temperature, and R is the gas
constant for dry air. The base state can be assumed to
very nearly satisfy the equation of state, such that

p ù rRT ,y

and if products of perturbations are neglected, then

r9 p9 T9yù 2 .
r p Ty

It is traditional (e.g., Emanuel 1994, 7–8) at this point
to neglect the contribution of pressure perturbations to
the density, such that

r9 T9yù 2 . (7)
r Ty

Therefore, if we temporarily ignore the first term on the
rhs of (5) and substitute from (7), using the fact that

5 Ty 2 y, the following result is obtained:T9 Ty
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dw T 2 Ty y5 g [ B, (8))dt TyB

where B is a commonly used form of the expression for
the vertical acceleration due to buoyancy as the differ-
ence between the parcel temperature and that of a hy-
drostatic basic state. Sometimes, B is used to denote
term ii of (5) also. For many purposes, the virtual cor-
rection is also neglected; however, see Doswell and Ras-
mussen (1994) for an assessment of this simplifying
assumption. In any case, B is the contribution to buoy-
ancy due to the density difference between the parcel
and the base state. For deep moist convection, it is as-
sumed that the parcel follows a moist adiabat once con-
densation is attained during finite parcel displacements.
Thus, the temperature difference between a saturated
ascending parcel and any base state (e.g., a sounding)
is likely to be a complicated function of height. If B is
integrated between the level of free convection and the
equilibrium level, the result is the so-called convective
available potential energy (CAPE).

Now (8) is a traditional formulation of parcel theory
(e.g., Hess 1959, 95–103), but we will show in the next
section that (8) is more than just a simplification of (5).
In textbook developments of parcel theory, (8) is used
to develop the notions of (a) the Brunt–Väisälä fre-
quency,2 as well as (b) measures of static stability as-
sociated with buoyancy (see Schultz et al. 2000). In
deriving (8), perturbation pressure is ignored twice: once
in deriving (7)—which Emanuel (1994, 7–8) suggests
may not be too bad an assumption—as well as earlier,
in assuming buoyancy includes only the thermal buoy-
ancy. It is widely accepted that thermal buoyancy, B, is
the buoyancy, in fact. It is this latter notion with which
we are concerned.

Finally, it should be noted that if the so-called Exner
function

kp
p [ ,1 2p0

where k [ R/cp and cp is the specific heat of air at
constant pressure, is employed as the pressure variable,
then it is possible to derive a perturbation buoyancy
formulation comparable to (8) that does not ignore the
pressure fluctuations; see Hane et al. (1981, p. 566) for
this development.

4. A description of buoyancy that is independent
of the base state

If the buoyant forces on a parcel inside a convective
cloud truly depend on the temperature difference be-
tween the parcel and some imposed base-state profile,
how does a parcel within that cloud ‘‘know’’ its tem-

2 There are some issues with this development, as well, as discussed
in Schultz et al. (2000).

perature (density) relative to the surrounding fluid? The
quantitative evaluation of thermal buoyancy alone ap-
parently depends on the rather arbitrary choice of which
environmental profile is used as the base state in the
calculation. Bryan and Fritsch (2000) have raised sim-
ilar questions. In a real fluid including the effects of
mass continuity, the existence of horizontal density var-
iations is communicated within the fluid by pressure
gradient forces, but in a one-dimensional model, this is
not possible. In models with one or more horizontal
dimensions, the existence of horizontal density gradients
implies the presence of solenoidal contributions to hor-
izontal vorticity. Thus, the thermal buoyancy gradient
contributes to vertical motion through the solenoidal
generation process and mass continuity. Solenoids can-
not be included in parcel theory or any other one-di-
mensional model.

Associated with this issue is confusion about just what
the base state represents. It is possible to define a base
state in which the nonkinetic energy (i.e., the sum of
potential, internal, and latent energies) is minimal after
mass rearrangements [see Eq. (6.6) of Emanuel 1994].
Emanuel shows that when considering the available po-
tential energy of the whole system (not just that of the
parcel), the actual amount of energy available can be
substantially less than that indicated by parcel CAPE.
This is related to a similar concept developed by Wang
and Randall (1996). However, these notions have not
yet gained widespread acceptance. The base state is gen-
erally chosen more or less arbitrarily.

To consider what this implies, consider a thought ex-
periment involving the operation of a three-dimensional
numerical cloud model of the sort pioneered by Schles-
inger (1975) and Wilhelmson and Klemp (1978). Fully
compressible cloud models of this sort represent the
current state of the art in quantitative assessment of
convection. Thus, they are a critically important context
for our understanding of buoyancy and convection be-
yond simple parcel theory. Our thought experiments
herein are aimed at elucidating the implications of the
choice of a base state.

In the typical simulation of deep, moist convection,
the initial state is at rest and is horizontally homoge-
neous everywhere, except within an initiating ‘‘bubble’’
that encompasses several grid points and, hence, can be
thought of as comprising several parcels.3 The initiating
bubble incorporates a density (i.e., virtual temperature)
perturbation from the base state that can be due to either
a temperature perturbation or a moisture perturbation,
or both. This density perturbation is chosen to provide
positive thermal buoyancy at the initial time (t 5 0).
The initiating bubble is usually not homogeneous but
has some spatial structure within. If, as is typically the
case for cloud model simulations, the hydrostatic base

3 In a gridpoint model, each point represents a surrounding volume
within which the governing equations apply and so can be thought
of as representing a single parcel.
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state is assumed to be identical to some horizontally
homogeneous vertical thermodynamic profile used to
initialize the model, then the only nonzero perturbations
within the domain at t 5 0 are those within the bound-
aries of the initiating bubble. Since the distribution of
density within the initiating bubble differs from that of
the hydrostatic base state, there must be a pressure per-
turbation associated with the bubble. The introduction
of the perturbation has ‘‘replaced’’ the air of the hy-
drostatic base state and the equation of state requires a
change in pressure. This change in the pressure field
produced by introducing the buoyant bubble is usually
neglected in the initialization of cloud models with
buoyant bubbles, creating an imbalance at the initial
instant. Such an initial pressure perturbation cannot be
determined using the hydrostatic relationship, which as-
sumes that dw/dt 5 0 initially. The initial pressure im-
balance is related to concepts described by van Delden
(2000) and Fiedler (2002)—in a multidimensional com-
pressible model, it produces a ‘‘convective adjustment’’
mediated by acoustic waves. The acoustic waves rapidly
accomplish this adjustment, owing to their high prop-
agation velocities,4 such that this initial imbalance rap-
idly disappears and has little effect on the ensuing sim-
ulation (G. Bryan 2001, personal communication).

Most numerical cloud models and even mesoscale
models employ the artifice of a base state primarily to
reduce truncation error. They introduce this base state,
which typically is hydrostatic, horizontally homoge-
neous and time independent, to avoid a direct evaluation
of the pressure gradient force that otherwise would in-
volve a relatively small difference between two rela-
tively large numbers. The base state in cloud models
almost invariably is chosen to be the same as the sound-
ing used to initialize that model, although if the envi-
ronment is not horizontally homogenous (as in a cloud-
resolving mesoscale model), the choice of which vertical
profile to use as the base state is not clear.

If the model’s initial state is changed, the outcome of
the simulation will certainly be changed; the course of
the simulation surely depends on the initial conditions.
Indeed, changing the initial conditions has been the
technique of choice when using numerical cloud models
to explore the impact on convection of such external
parameters as CAPE and environmental vertical wind
shear (e.g., Weisman and Klemp 1982, 1984). The use
of cloud models initiated with horizontally homoge-
neous initial conditions (and an initiating bubble) is an
abstraction that is very distinct from parcel theory or a
purely one-dimensional model because numerical sim-
ulations with horizontal as well as vertical dimension-
ality necessarily enforce mass continuity in some form.
Numerical simulation models always include a mass

4 If a model uses a mass continuity equation that is not fully com-
pressible, acoustic modes are not admissible, but in such a case, the
modified pressure field caused by introducing the initiating bubble
could be found using a diagnostic pressure equation.

continuity equation and enforce that mass continuity
statement to whatever accuracy is permitted by their
numerical methods. The key point is that in such models
the bubble is capable of interacting with its environment
in a physically realistic way.

In such numerical cloud model simulations, it is at
least logically possible to choose a different hydrostatic
base state than the sounding used to initialize the
model’s horizontally homogeneous initial conditions. If
so, the resulting perturbation fields would be nonzero
nearly everywhere within the model domain, even
though the ‘‘full field’’ initial conditions (the base state
plus the perturbation) would have to remain the same.
If the full field is altered, the simulation is for a different
atmospheric initial state. Changing the static stability of
the sounding, as probed by parcel theory, properly
should affect the outcome of a simulation. Physically,
the net vertical accelerations due to buoyancy must be
independent of any arbitrary choice for a model’s base
state, but they certainly do depend on the full field.
Therefore, buoyancy must not depend on an arbitrary
choice of the base state. The point is that if the base
state used in the simulation differs from that of the
sounding that specifies the horizontally homogeneous
initial conditions, then the buoyant acceleration cannot
depend only on this essentially arbitrary choice of the
base state, because the full field (including the initiating
bubble) must be the same no matter what base state is
chosen.

In our thought experiment, after the very first time
step following t 5 0, the environment outside the ini-
tiating bubble will no longer be horizontally homoge-
neous—the processes set in motion by the initiating bub-
ble will begin to modify the bubble’s surroundings. In-
deed, with time it will become increasingly difficult to
define a boundary between the initiating bubble and its
environment. Even if the base state and the environment
are identical at t 5 0 (except within the initiating
bubble), this will no longer be the case after the very
first time step. When the base state is held constant (as
it is in most numerical simulations) after t 5 0 during
the simulation, the differences between the base state
and the simulated environment generally increase with
time, albeit not without limit. Typically in the simula-
tions, the base state is used as the reference to diagnose
the thermal buoyancy, B, and this diagnosis is used to
represent the contributions due to buoyancy. Therefore,
even in the usual case of choosing the initial horizontally
homogeneous environment as the base state, its rele-
vance to the forces experienced by parcels during the
subsequent evolution is increasingly unclear after the
initial time. Fortunately, as we will show, numerical
simulations are generally not affected by the choice of
the base state.

For models that are not initiated with horizontally
homogeneous conditions, such as convection-resolving
mesoscale models, this argument is even more pertinent.
If a horizontally homogeneous base state is used in a
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simulation that begins with inhomogeneous initial con-
ditions, as is often the case for mesoscale models, non-
zero perturbations will exist over most of the domain
at t 5 0 and thereafter. Changing the base state for such
a simulation changes the values of the perturbations (but
not the patterns), thereby changing the thermal buoy-
ancy, but choosing a different base state can not change
the initial full field. It is usually the case that the choice
of base state is not very important, although there might
be some purely numerical issues with choosing it prop-
erly to keep the truncation error reasonably low. A suf-
ficiently unusual base state could create numerical dif-
ficulties but should not alter the physics, assuming the
initial full field is not changed. For the purposes of this
discussion, the preceding discussion illustrates that
when doing a diagnostic analysis of the simulations, the
thermal buoyancy (B) calculated with reference to the
base state gives only part of the total buoyancy.

To see that neglecting term i in (5)—or, in effect,
using (8)—results in an incomplete description of buoy-
ancy, let us return to our thought experiment. At t 5 0,
a density perturbation from the base state is introduced
within some part of an atmospheric column initially at
rest. We have said that the presence of a density per-
turbation implies a change in the pressure profile. That
is, as discussed in Emanuel (1994, p. 385), the pertur-
bation pressure is p9 5 1 , where is the con-p9 p9 p9b d b

tribution due to buoyancy, arising from the air within
the perturbation volume having a different density than
the hydrostatically balanced base state, and is thep9d
dynamic contribution to perturbation pressure arising
from flow field differences created by the perturbation.5

In our unphysical thought experiment, 5 0 at t 5 0p9d
because there is initially no flow, but there must still be
an acceleration—since is not hydrostatic, cannotp9 p9b b

be diagnosed hydrostatically, as noted earlier.
Equation (5) includes the impact of perturbation pres-

sure gradient force, but it combines the specific contri-
bution from thermal buoyancy with that due to the flow.
Virtually all numerical models use (5) in some form or
another and so do not ignore term i in (5). However,
consider the following rearrangement of (5):

dw 1 ]p9 ]p9b d5 2 1 1 B1 2dt r ]z ]z

1 ]p9 1 ]p9d b5 2 1 2 1 B .1 2r ]z r ]z
(9)| | | |

| |
i ii

5 Observe that for a finite-volume perturbation (e.g., an initiating
bubble), there are also lateral boundaries to that volume, and along
these lateral boundaries, there are horizontal perturbation pressure
gradient forces acting to accelerate the horizontal winds. The aspect
ratio (i.e., the height relative to the width) of the perturbation volume
becomes an important issue when buoyancy is considered in simu-
lations involving more than one (vertical) space dimension, as dis-
cussed in Das (1979) or Kessler (1985).

Note that (9) is virtually identical to Eq. (11.5.17) in
Emanuel (1994) and is similar to descriptions found in
Rotunno and Klemp (1985), among others. This rear-
ranged form highlights the physically distinct contri-
butions to the vertical accelerations. As noted before,
term i of (9) is due to the dynamic perturbation pressure
(a function of the flow field), which is clearly indepen-
dent of the choice of a thermodynamic base state. Term
ii of (9) combines the traditional thermal buoyancy term
with the buoyant contribution to the perturbation pres-
sure gradient force. We believe that this complete def-
inition of buoyancy is not widely recognized—strictly
speaking, ‘‘buoyancy’’ is term ii of (9), not just B. The
partitioning of buoyancy into the two separate contri-
butions included in term ii of (9) depends on the base
state, but the sum of the two terms cannot be affected
by changing the reference state. In fact, Davies-Jones
(2003) has shown this to be the case.

When thermal buoyancy is altered by changing the
base state, it must follow that the perturbation pressure
gradient force due to buoyancy (21/r)(] /]z) is alsop9b
changed so as to compensate for the changes to B. There
is no alternative if the total forcing due to buoyancy is
to be independent of the base state. A special case show-
ing this compensation between the two parts of term ii
in (9) is developed in the appendix. In general, the con-
nection between thermal buoyancy and the perturbation
pressure gradient force depends on the form of the mass
continuity equation used; Davies-Jones (2003) has
shown that the buoyancy does not depend on the base
state for an anelastic system.

5. Issues with defining the base state

Numerical simulation models of atmospheric flow
generally involve the solution of a system of coupled
partial differential equations, including some form of
mass continuity. The forces on air parcels at points are
local rather than being defined relative to some arbitrary
base state that exists outside the parcel somewhere. Par-
titioning the vertical pressure gradient force into an un-
accelerated, hydrostatically balanced base state and a
perturbation is an artifice that is primarily done for ped-
agogical reasons or for computational accuracy rather
than being a physical reality. The atmosphere cannot
know anything about such a partitioning; air parcels
accelerate only in response to the local force balance.

When doing observations-based diagnostic studies,
the contribution to ]p9/]z from buoyancy can, in prin-
ciple, be found from B (see Emanuel 1994, p. 385) by
solving an appropriate diagnostic equation for pressure.
However, the choice of a mass continuity equation af-
fects the resulting diagnostic pressure equation. For a
Boussinesq fluid, with density r0, this is simply

1 ]B
2 2 22 ¹ p9 5 |D | 2 |z | 2 , (10)

r ]z0

where | D | is the magnitude of the local resultant de-
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formation, and z is the local three-dimensional vorticity
vector. The first two terms on the rhs of (10) cannot be
determined, in general, from a single observed sound-
ing, but it is possible to determine ]B/]z if a local sound-
ing is used as the reference state and parcel theory is
used to assess the stability of vertically displaced par-
cels. With the thermal buoyancy estimated this way, a
solution of (10) for that part of the perturbation pressure
due to buoyancy could be found, given appropriate
boundary conditions. From the solution, ] /]z could bep9b
diagnosed. For cumulonimbus convection, the Boussi-
nesq approximation is not quantitatively accurate, al-
though it might be qualitatively acceptable. An anelastic
version of the diagnostic pressure equation in generally
regarded as an improved representation for cloud mod-
els, and Davies-Jones (2003) has developed an expres-
sion for buoyancy that explicitly incorporates the effects
of horizontal density variation. Nevertheless, the Bous-
sineq form of the diagnostic pressure equation contains
the most important physical contributions to perturba-
tion pressure.

Houze (1993, p. 225) has shown that for a one-di-
mensional model, which is equivalent to a slab of in-
finite horizontal extent (see his Fig. 7), the vertical per-
turbation pressure gradient due to buoyancy exactly can-
cels the effect of B. Thus, the classical development of
parcel theory only in the vertical dimension ignores the
vertical perturbation pressure gradient term because if
it is included, the model makes the apparently nonin-
tuitive prediction of no acceleration. Although both per-
turbation pressure gradient terms usually oppose B, the
dynamic term diminishes as the diameter of the con-
vecting element decreases [see the discussion by Houze
(1993)] and under certain circumstances actually en-
hances the effect of thermal buoyancy, as noted by Ro-
tunno and Klemp (1982) and many others.

Doswell and Rasmussen (1994) have asserted that
CAPE generally is not an accurate predictor of vertical
motion in storms. There are many issues besides the
choice of a base state that can alter the accuracy of the
vertical motion estimates derived from CAPE: the
choice of which parcel to lift, the neglect of dynamic
pressure perturbation effects in sheared environments,
whether moist adiabatic ascent is pseudoadiabatic or
reversible moist adiabatic, the complex topic of entrain-
ment, and the impact of freezing on the process, to name
only some of them. Apart from these, however, hori-
zontal variability of the thermodynamic variables in the
severe convective environment has been of concern in
trying to estimate CAPE (Brooks et al. 1994; Weisman
et al. 1998), and specification of a ‘‘representative’’
sounding has long been recognized as a troubling issue.
Davies-Jones (2003) has demonstrated, furthermore,
that convection responds to horizontal variations in the
environment in a complex way.

Parcel theory–based parameters such as CAPE can
still be viewed as meaningful descriptors of the envi-
ronment in which deep convection takes place and are

valid when used as predictors of convection, but should
not be understood as representing a complete description
of the contribution due to buoyancy in deep convective
storms. The buoyant contribution to the perturbation
pressure generally opposes that due to the thermal buoy-
ancy and so considering B alone typically overestimates
the magnitude of any contribution from buoyancy.

Numerical cloud simulation models have demonstrat-
ed that the association between CAPE and the vertical
motion of severe convection is open to question, in large
part because of the importance of dynamic vertical per-
turbation pressure gradient force contributions [i.e. p9d
in (10), above] to updrafts in sheared environments (e.g.,
Rotunno and Klemp 1985). Overall, this is an issue
outside the scope of this article, but it is nevertheless
an important limitation of the use of CAPE as an es-
timator of vertical motion.

6. Conclusions

The absence of a meaningful form of mass continuity
in a one-dimensional model precludes the possibility of
such a model making a physically accurate prediction.
Parcel theory neglects the vertical perturbation pressure
gradients and so produces an inaccurate mental picture
of the actual processes of convection, as well as inac-
curate predictions of the accelerations. We have asserted
that parcel theory is designed to probe the stability char-
acteristics of that very base state. Change the base state,
and the results of a parcel theory analysis should change
because it is concerned with the sounding, not any con-
vection that might ensue. Multidimensional numerical
models that employ some form of (5) and enforce mass
continuity do not depend physically on the choice of the
base state, although their numerical aspects might ex-
hibit some such dependence.

The diagnostic pressure equation for models that are
not fully compressible is generally elliptical, so a point
source involving the thermal buoyancy on the right-hand
side implies some ‘‘action at a distance’’ regarding the
diagnosed pressure distribution. This is indeed what has
been shown for the case of an anelastic mass continuity
equation by Davies-Jones (2003). The effect of the sur-
rounding density distribution falls off with distance.
However, to say that buoyancy is a relative quantity in
the sense that it is defined relative to some hypothetical
environment is a drastic oversimplification of the situ-
ation, to the point of being misleading.

At any point in a fluid, the accelerations attributable
to the density distribution are manifested by unbalanced
pressure gradient forces. The pressure field that drives
the vertical (and horizontal) accelerations responds to
the density distribution, but the resulting accelerations
are still evaluated locally (at points) as the sum of the
forces in the momentum equations. Changing the base
state changes the diagnosed thermal buoyancy term (B),
but it also alters the diagnosed perturbation pressure
field (and, hence, the perturbation pressure gradient
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terms) in a way that compensates for the changes in the
diagnosis of B caused by changes to the base state. The
details of that compensation depend on what mass con-
tinuity equation is used, but in the end, the physics of
buoyancy cannot depend on the base state used to par-
tition the full field into buoyant and nonbuoyant (i.e.,
hydrostatic) components. The choice of what hydro-
static base state to use is arbitrary and so cannot have
physical meaning.

The pedagogical development of parcel theory needs
modification to emphasize the limitations imposed by
pure parcel theory that lead to the erroneous interpre-
tation of buoyancy as a quantity relative to some base
state. In fluids, Archimedean notions of buoyancy are
incomplete and misleading. Buoyancy is the statically
forced part of the locally nonhydrostatic, pressure gra-
dient force, not just the thermal buoyancy. Use of B
alone in forecasting might be successful as a param-
eterized expression of the actual buoyancy, but it is
not the complete buoyancy because it depends on the
choice of a base state.

Therefore, any diagnosis of buoyancy from model
simulations that does so with reference to a constant
(also usually horizontally homogeneous) base state
needs to include not only the thermal buoyancy (term
B) but also the contributions from the vertical pertur-
bation pressure gradient term due to buoyancy. The
perturbation pressure due to the flow should be diag-
nosed separately.
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APPENDIX

Compensation between the Perturbation Pressure
and Relative Density Terms to Produce Indepen-

dence from the Reference State
Consider the special case of an isothermal, hydrostatic

atmosphere. The temperature is T0, so the hydrostatic
equation can be integrated for the pressure and density:

gz
p(z) 5 p exp 2 ,0 1 2RT0

gz
r(z) 5 r exp 2 , (A1)0 1 2RT0

where p0 and r0 are the surface pressure and density,
respectively, and z is the height above the surface. For
an isothermal, hydrostatic base state, given by 5 T0T
1 c, the pressure and density profiles are given by

gz
p(z) 5 p exp 2 ,0 1 2RT

gz
r(z) 5 r exp 2 . (A2)0 1 2RT

Therefore, the perturbation pressure and density can be
shown to be

gz gz
p9(z) 5 p exp 2 2 p exp 2 ,0 01 2 [ ]RT R(T 1 c)0 0

gz gz
r9(z) 5 r exp 2 2 r exp 2 . (A3)0 01 2 [ ]RT R(T 1 c)0 0

Now consider the two terms in part ii of Eq. (10).
The first is the perturbation pressure gradient term; dif-
ferentiating the expression for p9 in (A3) with respect
to z yields

1 ]p9 r gzc02 5 g 1 2 exp , (A4)5 6[ ]r ]z r RT (T 1 c)0 0 0

whereas the relative density term is given by

r9 r gzc02 g 5 exp 2 1 g. (A5)5 6[ ]r r RT (T 1 c)0 0 0

It is easy to see that the two separate contributions to
buoyancy [i.e., Eqs. (A4) and (A5)] are equal in mag-
nitude but of opposite sign, yielding a zero sum, which
must be the case since both the base state and the actual
atmosphere are hydrostatic. In this special case, the two
terms are equal and opposite no matter what the choice
of c might be, including the trivial case where c 5 0.

Obviously, showing this in more general cases is con-
siderably more complicated, but the principle remains
the same. Changes to the base state always result in
changes to the two parts of term ii in (10) that will be
equal in magnitude and have opposite sign.
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